[1] A. Rahman, J. Chin, F. Kabir, Y.M. Hung, Characterization and thrust measurements from electrolytic decomposition of ammonium dinitramide (ADN) based liquid monopropellant FLP-103 in MEMS thrusters, Chin. J. Chem. Eng. 26(2018) 1992-2002. [2] X. Wang, G. Xu, Q. Wang, C. Lu, C. Zong, J. Zhang, L. Yue, G. Cui, A phase inversion based sponge-like polysulfonamide/SiO2 composite separator for high performance lithium-ion batteries, Chin. J. Chem. Eng. 26(2018) 1292-1299. [3] W. Zhang, Y. Zhang, Z. Yang, G. Chen, G. Ma, Q. Wang, In-situ design and construction of lithium-ion battery electrodes on metal substrates with enhanced performances:A brief review, Chin. J. Chem. Eng. 24(2016) 48-52. [4] A. Epstein, S. Senturia, Macro power from micro machinery, SCIENCE-NEW YORK THEN WASHINGTON (1997) 1211. [5] Y. Ju, K. Maruta, Microscale combustion:technology development and fundamental research, Prog. Energy Combust. Sci. 37(2011) 669-715. [6] Y. Tsuboi, T. Yokomori, K. Maruta, Lower limit of weak flame in a heated channel, Proc. Combust. Inst. 32(2009) 3075-3081. [7] A. Di Stazio, C. Chauveau, G. Dayma, P. Dagaut, Oscillating flames in microcombustion, Combust. Flame 167(2016) 392-394. [8] M.A. Bucci, J.-C. Robinet, S. Chibbaro, Global stability analysis of 3D microcombustion model, Combust. Flame 167(2016) 132-148. [9] K. Maruta, J. Parc, K. Oh, T. Fujimori, S. Minaev, R. Fursenko, Characteristics of microscale combustion in a narrow heated channel, Combustion, Explosion and Shock Waves 40(2004) 516-523. [10] J. Wan, H. Zhao, Dynamics of premixed CH4/air flames in a micro combustor with a plate flame holder and preheating channels, Energy 139(2017) 366-379. [11] H. Wang, C. Wei, P. Zhao, T. Ye, Experimental study on temperature variation in a porous inert media burner for premixed methane air combustion, Energy 72(2014) 195-200. [12] J. Li, Y. Wang, J. Shi, X. Liu, Dynamic behaviors of premixed hydrogen-air flames in a planar micro-combustor filled with porous medium, Fuel 145(2015) 70-78. [13] S. Bani, J. Pan, A. Tang, Q. Lu, Y. Zhang, Micro combustion in a porous media for thermophotovoltaic power generation, Appl. Therm. Eng. 129(2018) 596-605. [14] V. Giovannoni, R.N. Sharma, R.R. Raine, Premixed combustion of methane-air mixture stabilized over porous medium:A 2D numerical study, Chem. Eng. Sci. 152(2016) 591-605. [15] D.G. Norton, D.G. Vlachos, Hydrogen assisted self-ignition of propane/air mixtures in catalytic microburners, Proc. Combust. Inst. 30(2005) 2473-2480. [16] J. Chen, L. Yan, W. Song, D. Xu, Kinetic interplay between hydrogen and carbon monoxide in syngas-fueled catalytic micro-combustors, Int. J. Hydrog. Energy 42(2017) 12681-12695. [17] Q. Lu, J. Pan, W. Yang, A. Tang, S. Bani, X. Shao, Interaction between heterogeneous and homogeneous reaction of premixed hydrogen-air mixture in a planar catalytic micro-combustor, Int. J. Hydrog. Energy 42(2017) 5390-5399. [18] J. Pan, R. Zhang, Q. Lu, Z. Zha, S. Bani, Experimental study on premixed methane-air catalytic combustion in rectangular micro channel, Appl. Therm. Eng. 117(2017) 1-7. [19] W. Yang, A. Fan, H. Yao, W. Liu, Effect of reduced pressures on the combustion efficiency of lean H2/air flames in a micro cavity-combustor, Int. J. Hydrog. Energy 41(2016) 15354-15361. [20] Y. Liu, A. Fan, H. Yao, W. Liu, A numerical investigation on the effect of wall thermal conductivity on flame stability and combustion efficiency in a mesoscale channel filled with fibrous porous medium, Appl. Therm. Eng. 101(2016) 239-246. [21] A. Fan, J. Wan, K. Maruta, H. Yao, W. Liu, Interactions between heat transfer, flow field and flame stabilization in a micro-combustor with a bluff body, Int. J. Heat Mass Transf. 66(2013) 72-79. [22] A. Tang, Y. Xu, C. Shan, J. Pan, Y. Liu, A comparative study on combustion characteristics of methane, propane and hydrogen fuels in a micro-combustor, Int. J. Hydrog. Energy 40(2015) 16587-16596. [23] A. Tang, Y. Xu, J. Pan, W. Yang, D. Jiang, Q. Lu, Combustion characteristics and performance evaluation of premixed methane/air with hydrogen addition in a microplanar combustor, Chem. Eng. Sci. 131(2015) 235-242. [24] A. Tang, J. Deng, T. Cai, Y. Xu, J. Pan, Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights, Appl. Energy 203(2017) 635-642. [25] E. Amani, P. Alizadeh, R.S. Moghadam, Micro-combustor performance enhancement by hydrogen addition in a combined baffle-bluff configuration, Int. J. Hydrog. Energy 43(16) (2018) 8127-8138. [26] A. Tang, J. Pan, W. Yang, Y. Xu, Z. Hou, Numerical study of premixed hydrogen/air combustion in a micro planar combustor with parallel separating plates, Int. J. Hydrog. Energy 40(2015) 2396-2403. [27] Y. Yan, W. Pan, L. Zhang, W. Tang, Y. Chen, L. Li, Numerical study of the geometrical parameters on CH 4/air premixed combustion in heat recirculation microcombustor, Fuel 159(2015) 45-51. [28] A. Tang, T. Cai, J. Deng, Y. Xu, J. Pan, Experimental investigation on combustion characteristics of premixed propane/air in a micro-planar heat recirculation combustor, Energy Convers. Manag. 152(2017) 65-71. [29] A. Fan, J. Wan, Y. Liu, B. Pi, H. Yao, W. Liu, Effect of bluff body shape on the blow-off limit of hydrogen/air flame in a planar micro-combustor, Appl. Therm. Eng. 62(2014) 13-19. [30] J. Niu, J. Ran, L. Li, X. Du, R. Wang, M. Ran, Effects of trapezoidal bluff bodies on blow out limit of methane/air combustion in a micro-channel, Appl. Therm. Eng. 95(2016) 454-461. [31] G. Bagheri, S.E. Hosseini, M.A. Wahid, Effects of bluff body shape on the flame stability in premixed micro-combustion of hydrogen-air mixture, Appl. Therm. Eng. 67(2014) 266-272. [32] M. Ansari, E. Amani, Micro-combustor performance enhancement using a novel combined baffle-bluff configuration, Chem. Eng. Sci. 175(2018) 243-256. [33] J. Wan, A. Fan, H. Yao, W. Liu, A non-monotonic variation of blow-off limit of premixed CH4/air flames in mesoscale cavity-combustors with different thermal conductivities, Fuel 159(2015) 1-6. [34] W. Yang, Y. Xiang, A. Fan, H. Yao, Effect of the cavity depth on the combustion efficiency of lean H2/air flames in a micro combustor with dual cavities, Int. J. Hydrog. Energy 42(2017) 14312-14320. [35] Q. Peng, J.Q. E, Z. Zhang, W. Hu, X. Zhao, Investigation on the effects of front-cavity on flame location and thermal performance of a cylindrical micro combustor, Appl. Therm. Eng. 130(2018) 541-551. [36] J. E, Q. Peng, X. Zhao, W. Zuo, Z. Zhang, M. Pham, Numerical investigation on the combustion characteristics of non-premixed hydrogen-air in a novel microcombustor, Appl. Therm. Eng. 110(2017) 665-677. [37] W. Yang, L. Li, A. Fan, H. Yao, Effect of oxygen enrichment on combustion efficiency of lean H2/N2/O2 flames in a micro cavity-combustor, Chemical Engineering and Processing-Process Intensification 127(2018) 50-57. [38] A. Fan, L. Li, W. Yang, Z. Yuan, Comparison of combustion efficiency between micro combustors with single-and double-layered walls:A numerical study, Chemical Engineering and Processing-Process Intensification 137(2019) 39-47. [39] Q. Peng, Y. Wu, J.Q. E, W. Yang, H. Xu, Z. Li, combustion characteristics and thermal performance of premixed hydrogen-air in a two-rearward-step micro tube, Appl. Energy 242(2019) 424-438. [40] Q. Peng, J.Q. E, W. Yang, H. Xu, J. Chen, F. Zhang, T. Meng, R. Qiu, Experimental and numerical investigation of a micro-thermophotovoltaic system with different backward-facing steps and wall thicknesses, Energy 173(2019) 540-547. [41] W. Zuo, J.Q. E, H. Liu, Q. Peng, X. Zhao, Z. Zhang, Numerical investigations on an improved micro-cylindrical combustor with rectangular rib for enhancing heat transfer, Appl. Energy 184(2016) 77-87. [42] J. Pan, J. Zhu, Q. Liu, Y. Zhu, A. Tang, Q. Lu, Effect of micro-pin-fin arrays on the heat transfer and combustion characteristics in the micro-combustor, Int. J. Hydrog. Energy 42(2017) 23207-23217. [43] W. Zuo, J.Q. E, W. Hu, Y. Jin, D. Han, Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor, Energy 126(2017) 1-12. [44] W. Zuo, J.Q. E, Q. Peng, X. Zhao, Z. Zhang, Numerical investigations on thermal performance of a micro-cylindrical combustor with gradually reduced wall thickness, Appl. Therm. Eng. 113(2017) 1011-1020. [45] W. Zuo, J.Q. E, Q. Peng, X. Zhao, Z. Zhang, Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for microthermophotovoltaic system, Energy 122(2017) 408-419. [46] A. Alipoor, M.H. Saidi, Numerical study of hydrogen-air combustion characteristics in a novel micro-thermophotovoltaic power generator, Appl. Energy 199(2017) 382-399. [47] S. Akhtar, M.N. Khan, J.C. Kurnia, T. Shamim, Investigation of energy conversion and flame stability in a curved micro-combustor for thermo-photovoltaic (TPV) applications, Appl. Energy 192(2017) 134-145. [48] A. Fan, H. Zhang, J. Wan, Numerical investigation on flame blow-off limit of a novel microscale Swiss-roll combustor with a bluff-body, Energy 123(2017) 252-259. [49] W. Zuo, J.Q. E, R. Lin, Numerical investigations on an improved counterflow doublechannel micro combustor fueled with hydrogen for enhancing thermal performance, Energy Convers. Manag. 159(2018) 163-174. [50] C.-H. Kuo, P. Ronney, Numerical modeling of non-adiabatic heat-recirculating combustors, Proc. Combust. Inst. 31(2007) 3277-3284. [51] K. Bahlouli, U. Atikol, R.K. Saray, V. Mohammadi, A reduced mechanism for predicting the ignition timing of a fuel blend of natural-gas and n-heptane in HCCI engine, Energy Convers. Manag. 79(2014) 85-96. [52] G. WC Jr, Gas-phase Combustion Chemistry, Springer Science & Business Media1999. [53] P.C. Malte, D. Pratt, Measurement of atomic oxygen and nitrogen oxides in jetstirred combustion, Symposium (international) on combustion, Elsevier, 1975, pp. 1061-1070. [54] C. Bowman, Chemistry of Gaseous Pollutant Formation and Destruction, John Wiley & Sons, New York, 1991. [55] R. Taylor, R. Krishna, Multicomponent mass transfer, John Wiley & Sons1993. [56] K. Kuo Kenneth, Principles of Combustion, John Wiley & Sons, Inc, Hoboken, New Jersey, 2005. [57] M.F. Modest, Radiative Heat Transfer, Academic press 2013. [58] M. Torkzadeh, F. Bolourchifard, E. Amani, An investigation of air-swirl design criteria for gas turbine combustors through a multi-objective CFD optimization, Fuel 186(2016) 734-749. [59] A. Farokhipour, E. Hamidpour, E. Amani, A numerical study of NOx reduction by water spray injection in gas turbine combustion chambers, Fuel 212(2018) 173-186. [60] M. Jafari, M. Parhizkar, E. Amani, H. Naderan, Inclusion of entropy generation minimization in multi-objective CFD optimization of diesel engines, Energy 114(2016) 526-541. [61] H. Arjmandi, E. Amani, A numerical investigation of the entropy generation in and thermodynamic optimization of a combustion chamber, Energy 81(2015) 706-718. [62] V. Rajabi, E. Amani, A computational study of swirl number effects on entropy generation in gas turbine combustors, Heat Transfer Engineering 40(2019) 346-361. [63] C. Hirsch, Numerical computation of internal and external flows:The fundamentals of computational fluid dynamics, Elsevier2007. |