[1] A.M. Fulgueras, J. Poudel, D.S. Kim, J. Cho, Optimization study of pressure-swing distillation for the separation process of a maximum-boiling azeotropic system of water-ethylenediamine, Korean J. Chem. Eng. 33(2016) 46-56.
[2] Z. Zhu, D. Xu, X. Liu, Z. Zhang, Y. Wang, Separation of acetonitrile/methanol/benzene ternary azeotrope via triple column pressure-swing distillation, Sep. Purif. Technol. 169(2016) 66-77.
[3] Y. Wang, Z. Zhang, D. Xu, W. Liu, Z. Zhu, Design and control of pressure-swing distillation for azeotropes with different types of boiling behavior at different pressures, J. Process Control 42(2016) 59-76.
[4] S. Liang, Y. Cao, X. Liu, X. Li, Y. Zhao, Y. Wang, Y. Wang, Insight into pressure-swing distillation from azeotropic phenomenon to dynamic control, Chem. Eng. Res. Des. 117(2016) 318-335.
[5] A.A. Kiss, J. David, P. Suszwalak, Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns, Sep. Purif. Technol. 86(2012) 70-78.
[6] S.-J. Wang, D.S. Wong, Online switching of entrainers for acetic acid dehydration by heterogeneous azeotropic distillation, J. Process Control 23(2013) 78-88.
[7] I.L. Chien, K.-L. Zeng, H.-Y. Chao, J.H. Liu, Design and control of acetic acid dehydration system via heterogeneous azeotropic distillation, Chem. Eng. Sci. 59(2004) 4547-4567.
[8] X. Huang, W. Zhong, W. Du, F. Qian, Thermodynamic analysis and process simulation of an industrial acetic acid dehydration system via heterogeneous azeotropic distillation, Ind. Eng. Chem. Res. 52(2013) 2944-2957.
[9] H. Wang, Y. Li, W. Su, Y. Zhang, J. Guo, C. Li, Design and control of extractive distillation based on effective relative gain array, Chem. Eng. Technol. 39(2016) 2339-2347.
[10] I. Rodriguezdonis, V. Gerbaud, X. Joulia, Thermodynamic insights on the feasibility of homogeneous batch extractive distillation. 4. azeotropic mixtures with intermediate boiling entrainer, Ind. Eng. Chem. Res. 51(2012) 6489-6501.
[11] Y. Wang, P. Cui, Y. Ma, Z. Zhang, Extractive distillation and pressure-swing distillation for THF/ethanol separation, J. Chem. Technol. Biotechnol. 90(2015) 1463-1472.
[12] X. You, I. Rodriguez-Donis, V. Gerbaud, Low pressure design for reducing energy cost of extractive distillation for separating diisopropyl ether and isopropyl alcohol, Chem. Eng. Res. Des. 109(2016) 540-552.
[13] W.L. Luyben, Control comparison of conventional and thermally coupled ternary extractive distillation processes, Chem. Eng. Res. Des. 106(2016) 253-262.
[14] E. Lladosa, J.B. Monton, M. Burguet, Separation of di-n-propyl ether and n-propyl alcohol by extractive distillation and pressure-swing distillation:Computer simulation and economic optimization, Chem. Eng. Process. 50(2011) 1266-1274.
[15] Y. Wang, S. Liang, G. Bu, W. Liu, Z. Zhang, Z. Zhu, Effect of solvent flow rates on controllability of extractive distillation for separating binary azeotropic mixture, Ind. Eng. Chem. Res. 54(2015) 12908-12919.
[16] Y.Y. Loy, X.L. Lee, G.P. Rangaiah, Bioethanol recovery and purification using extractive dividing-wall column and pressure swing adsorption:An economic comparison after heat integration and optimization, Sep. Purif. Technol. 149(2015) 413-427.
[17] G. Lei, P. Mao, M. He, L. Wang, X. Liu, A. Zhang, Combination of column adsorption and supercritical fluid extraction for recovery of dissolved essential oil from distillation wastewaterof Yulania liliiflora, J. Chem. Technol. Biotechnol. 91(2016)1896-1904.
[18] Y.Y. Loy, X.L. Lee, G.P. Rangaiah, Optimization and economic evaluation of bioethanol recovery and purification processes involving extractive distillation and pressure swing adsorption, Comput. Aided Chem. Eng. 37(2015) 413-418.
[19] D. Cai, S. Hu, Q. Miao, C. Chen, H. Chen, C. Zhang, P. Li, P. Qin, T. Tan, Two-stage pervaporation process for effective in situ removal acetone-butanol-ethanol from fermentation broth, Bioresour. Technol. 224(2017) 380-388.
[20] J. Fontalvo, J.T.F. Keurentjes, A hybrid distillation-pervaporation system in a single unit for breaking distillation boundaries in multicomponent mixtures, Chem. Eng. Res. Des. 99(2015) 158-164.
[21] Y.T. Ong, S.H. Tan, Pervaporation separation of a ternary azeotrope containing ethyl acetate, ethanol and water using a buckypaper supported ionic liquid membrane, Chem. Eng. Res. Des. 109(2016) 116-126.
[22] M.T. Del Pozo Gomez, J.-U. Repke, D.-y. Kim, D.R. Yang, G.N. Wozny, Reduction of energy consumption in the process industry using a heat-integrated hybrid distillation pervaporation process, Ind. Eng. Chem. Res. 48(2009) 4484-4494.
[23] W.L. Luyben, Distillation Design and Control Using Aspen Simulation, John Wiley & Sons, New Jersey, 2013.
[24] Q. Wang, B. Yu, C. Xu, Design and control of distillation system for methylal/methanol separation. Part 1:Extractive distillation using DMF as an entrainer, Ind. Eng. Chem. Res. 51(2012) 1281-1292.
[25] J.D. Seader, E.J. Henley, Separation Process Principles, 2nd edition John Wiley & Son, New Jersey, 2011.
[26] Y.C. Chen, B.Y. Yu, C.C. Hsu, I.L. Chien, Comparison of heteroazeotropic and extractive distillation for the dehydration of propylene glycol methyl ether, Chem. Eng. Res. Des. 111(2016) 184-195.
[27] D. Xin, Q. Ye, J. Qin, Y. Hao, X. Suo, L. Rui, Energy-saving dividing-wall column design and control for benzene extraction distillation via mixed entrainer, Chem. Eng. Process. 100(2015) 49-64.
[28] H.Luo,L.Kai,W.Li,L.Ye,X.Ming, C.Xu, Comparison ofpressure-swingdistillation and extractive distillation methods for isopropyl alcohol/diisopropyl ether separation, Ind. Eng. Chem. Res. 53(2014) 15167-15182.
[29] Y. Wang, Z. Zhang, Y. Zhao, S. Liang, G. Bu, Control of extractive distillation and partially heat-integrated pressure-swing distillation for separating azeotropic mixture of ethanol and tetrahydrofuran, Ind. Eng. Chem. Res. 54(2015) 8533-8545.
[30] M. Teodorescu, K. Aim, I. Wichterle, Isothermal vapor-liquid equilibrium in the quaternary water +2-propanol + acetic acid + isopropyl acetate system with chemical reaction, J. Chem. Eng. Data 46(2001) 261-266.
[31] M. Nicolae, F. Oprea, Vapor-liquid equilibrium for the binary mixtures of dipropylene glycol with aromatic hydrocarbons:Experimental and regression, Fluid Phase Equilib. 370(2014) 34-42.
[32] H. Li, M. Han, X. Gao, X. Li, Isobaric vapor-liquid equilibrium for binary system of cinnamaldehyde + benzaldehyde at 10, 20 and 30 kPa, Fluid Phase Equilib. 364(2014) 62-66.
[33] A.F. Cristino, S. Rosa, P. Morgado, A. Galindo, E.J.M. Filipe, A.M.F. Palavra, C.A.N.D. Castro, High-temperature vapour-liquid equilibrium for the (water + alcohol) systems and modelling with SAFT-VR:2. Water-1-propanol, J. Chem. Thermodyn. 60(2013) 15-18.
[34] C. Gabaldon, P. Marzal, J.B. Monton, M.A. Rodrigo, Isobaric vapor-liquid equilibria of the water +1-propanol system at 30, 60, and 100 kPa, J. Chem. Eng. Data 41(1996) 1176-1180.
[35] M.C. Iliuta, F.C. Thyrion, O.M. Landauer, Effect of calcium chloride on the isobaric vapor-liquid equilibrium of 1-propanol + water, J. Chem. Eng. Data 41(1996) 402-408.
[36] J. Pla-Franco, E. Lladosa, S. Loras, J.B. Monton, Approach to the 1-propanol dehydration using an extractive distillation process with ethylene glycol, Chem. Eng. Process. 91(2015) 121-129.
[37] E.C. Carlson, Don't gamble with physical properties for simulations, Chem. Eng. Process. 92(1996) 35-46.
[38] Y. An, W. Li, Y. Li, S. Huang, J. Ma, C. Shen, C. Xu, Design/optimization of energysaving extractive distillation process by combining preconcentration column and extractive distillation column, Chem. Eng. Sci. 135(2015) 166-178.
[39] J. Gmehling, Azeotropic Data, Wiley-VCH, Wein-heim, Germany, 2004.
[40] J. Wisniak, J. Ortega, L. Fernandez, A fresh look at the thermodynamic consistency of vapour-liquid equilibria data, J. Chem. Thermodyn. 105(2017) 385-395.
[41] J. Gmehling, B. Kolbe, M. Kleiber, J. Rarey, Chemical Thermodynamics for Process Simulation, Wiley-VCH, Wein-heim, Germany, 2012.
[42] J.N. Im, C. Gwak, Determination of vapor liquid equilibrium from boiling point curve, Korean Chem. Eng. Res. 19(1981) 681-687.
[43] P. Gierycz, M. Rogalski, S. Malanowski, Vapour-liquid equilibria in binary systems formed by N-Methylpyrrolidone with hydrocarbons and hydroxyl derivatives, Fluid Phase Equilib. 22(1985) 107-122.
[44] L.J. Ping, P. Yong, J.W. Mao, Vapor-liquid equilibria of acetic acid-water-Nmethylpyrrolidone system at 26.67 kPa, J. Chem. Eng. Chin. Univ. 25(2011) 554-558.
[45] Z. Cui, Z. Li, Z. Gao, J. Li, Vapor-liquid equilibria of N-methylpyrrolidone(1)-water (2) binary system by an ebulliometer, Chin. J. Chem. Eng. 2(1994) 119-124.
[46] L. Ping, Y. Peng, J. Mao, Vapor-liquid equilibria of acetic acid-water-Nmethylpyrrolidone system at 26.67 kPa, Chin. J. Chem. Eng. 25(2011) 554-558.
[47] E. Hosgor, T. Kucuk, I.N. Oksal, D.B. Kaymak, Design and control of distillation processes for methanol-chloroform separation, Comput. Chem. Eng. 67(2014) 166-177.
[48] M. Piccolo, P. Douglas, P. Lee, Data reconciliation using AspenPlus, Dev. Chem. Eng. Miner. Process. 4(1996) 157-182.
[49] Y.-C. Wu, H.-Y. Lee, C.-H. Lee, H.-P. Huang, I.-L. Chien, Design and control of thermally-coupled reactive distillation system for esterification of an alcohol mixture containing n-amyl alcohol and n-hexanol, Ind. Eng. Chem. Res. 52(2013) 17184-17197.
[50] Y. Cao, M. Li, Y. Wang, T. Zhao, X. Li, Z. Zhu, Y. Wang, Effect of feed temperature on economics and controllability of pressure-swing distillation for separating binary azeotrope, Chem. Eng. Process. 110(2016) 160-171.
[51] N. Kamihama, H. Matsuda, K. Kurihara, K. Tochigi, S. Oba, Isobaric vapor-liquid equilibria for ethanol + water + ethylene glycol and its constituent three binary systems, J. Chem. Eng. Data 57(2012) 339-344.
[52] G.F. Qian, W. Liu, L.T. Wang, D.C. Wang, H. Song, (Vapour + liquid) equilibria in the ternary system (acetonitrile + n-propanol + ethylene glycol) and corresponding binary systems at 101.3 kPa, J. Chem. Thermodyn. 67(2013) 241-246.
[53] X. Xu, W. Liu, M. Li, Y. Ri, Y. Wang, Ternary liquid-liquid equilibrium of azeotropes (ester + alcohol) with different ionic liquids at T=298.15 K, J. Chem. Eng. Data 62(2017) 532-538.
[54] D.P. Tassios, Applied Chemical Engineering Thermodynamics, Springer, Berlin Heidelberg, 1989. |