中国化学工程学报 ›› 2022, Vol. 41 ›› Issue (1): 121-144.DOI: 10.1016/j.cjche.2021.12.018
Huaixun Lim1,2, Kunli Goh2, Miao Tian3, Rong Wang2,4
收稿日期:
2021-08-02
修回日期:
2021-12-16
出版日期:
2022-01-28
发布日期:
2022-02-25
通讯作者:
Rong Wang,E-mail address:Rwang@ntu.edu.sg
Huaixun Lim1,2, Kunli Goh2, Miao Tian3, Rong Wang2,4
Received:
2021-08-02
Revised:
2021-12-16
Online:
2022-01-28
Published:
2022-02-25
Contact:
Rong Wang,E-mail address:Rwang@ntu.edu.sg
摘要: This review compares the different types of membrane processes for air dehumidification. Three main categories of membrane-based dehumidification are identified – membrane contactors using porous membranes with concentrated liquid desiccants, separative membranes using dense membrane morphology with a pressure gradient to drive the separation of moisture from air, and adsorptive membranes using nanofibrous membranes which adsorb and capture moisture to realise dehumidification. Drawing upon the importance of dehumidification and humidity control for urban sustainability and energy efficacy, this review critically analyses and recognizes the three unique categories of membrane-based air dehumidification technologies. Essentially, the discussion is broken into three sections-one for each category-discriminating in terms of the driving force, membrane structure and properties, and its performance indicators. Readers will notice that despite having the same objective to dehumidify air, the polymers used amongst each category differs to suit the operating requirements and optimize dehumidification performance. At the end of each section, a performance table or summary of dehumidifying membranes in its class is provided. The final section concludes with a comparative review of the three categories on membrane-based air dehumidification technologies and draw inspiration from parallel research to rationalise the potential and innovative use of promising materials in membrane fabrication for air dehumidification.
Huaixun Lim, Kunli Goh, Miao Tian, Rong Wang. Membrane-based air dehumidification: A comparative review on membrane contactors, separative membranes and adsorptive membranes[J]. 中国化学工程学报, 2022, 41(1): 121-144.
Huaixun Lim, Kunli Goh, Miao Tian, Rong Wang. Membrane-based air dehumidification: A comparative review on membrane contactors, separative membranes and adsorptive membranes[J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 121-144.
[1] S. Schiavon, T. Hoyt, A. Piccioli, Web application for thermal comfort visualization and calculation according to ASHRAE Standard 55, Build. Simul. 7(4)(2014)321-334. [2] P. Bareschino, G. Diglio, F. Pepe, G. Angrisani, C. Roselli, M. Sasso, Numerical study of a MIL101 metal organic framework based desiccant cooling system for air conditioning applications, Appl. Therm. Eng. 124(2017)641-651. [3] A.T. Mohammad, S.B. Mat, M.Y. Sulaiman, K. Sopian, A.A. Al-Abidi, Survey of liquid desiccant dehumidification system based on integrated vapor compression technology for building applications, Energy Build. 62(2013) 1-14. [4] P.A. Kallenberger, M. Fröba, Water harvesting from air with a hygroscopic salt in a hydrogel-derived matrix, Commun. Chem. 1(1)(2018)1-6. [5] S. Kim, Hyunho, Yang, S.R. Rao, S. Narayanan, E.A. Kapustin, H. Furukawa, A.S. Umans, O.M. Yaghi, E.N. Wang, Powered by natural sunlight, Science (80-)356 (2017)430-434. [6] F. Bagheri, Performance investigation of atmospheric water harvesting systems, Water Resour. Ind. 20(2018)23-28. [7] H.L. Nguyen, N. Hanikel, S.J. Lyle, C.H. Zhu, D.M. Proserpio, O.M. Yaghi, A porous covalent organic framework with voided square grid topology for atmospheric water harvesting, J. Am. Chem. Soc. 142(5)(2020)2218-2221. [8] R.Y. Li, Y. Shi, M. Alsaedi, M.C. Wu, L. Shi, P. Wang, Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator, Environ. Sci. Technol. 52(19)(2018)11367-11377. [9] N.M.S. Bettahalli, R. Lefers, N. Fedoroff, T. Leiknes, S.P. Nunes, Triple-bore hollow fiber membrane contactor for liquid desiccant based air dehumidification, J. Membr. Sci. 514(2016)135-142. [10] R.S. Das, S. Jain, Experimental performance of indirect air-liquid membrane contactors for liquid desiccant cooling systems, Energy 57(2013)319-325. [11] H. Sijbesma, K. Nymeijer, R. van Marwijk, R. Heijboer, J. Potreck, M. Wessling, Flue gas dehydration using polymer membranes, J. Membr. Sci. 313(1-2) (2008)263-276. [12] M. Ignat, P. Samoila, C. Cojocaru, G. Soreanu, I. Cretescu, V. Harabagiu, Porous polymer/inorganic composite matrices as efficient desiccants for air dehumidification, Appl. Surf. Sci. 487(2019)1189-1197. [13] J. Woods, Membrane processes for heating, ventilation, and air conditioning, Renew. Sustain. Energy Rev. 33(2014)290-304. [14] Z.W. Chen, J. Zhu, H.Y. Bai, Performance assessment of a membrane liquid desiccant dehumidification cooling system based on experimental investigations, Energy Build. 139(2017)665-679. [15] X.L. Liu, M. Qu, X.B. Liu, L.S. Wang, Membrane-based liquid desiccant air dehumidification:a comprehensive review on materials, components, systems and performances, Renew. Sustain. Energy Rev. 110(2019)444-466. [16] M. Qu, O. Abdelaziz, Z.M. Gao, H.X. Yin, Isothermal membrane-based air dehumidification:a comprehensive review, Renew. Sustain. Energy Rev. 82 (2018)4060-4069. [17] R.H. Qi, C.S. Dong, L.Z. Zhang, A review of liquid desiccant air dehumidification:From system to material manipulations, Energy Build. 215(2020)109897. [18] G. Fekadu, S. Subudhi, Renewable energy for liquid desiccants air conditioning system:a review, Renew. Sustain. Energy Rev. 93(2018)364-379. [19] A. Gurubalan, M.P. Maiya, P.J. Geoghegan, A comprehensive review of liquid desiccant air conditioning system, Appl. Energy 254(2019)113673. [20] H.X. Fu, X.H. Liu, Review of the impact of liquid desiccant dehumidification on indoor air quality, Build. Environ. 116(2017)158-172. [21] X. Zheng, T.S. Ge, R.Z. Wang, Recent progress on desiccant materials for solid desiccant cooling systems, Energy 74(2014)280-294. [22] Y.F. Yang, G. Cui, C.Q. Lan, Developments in evaporative cooling and enhanced evaporative cooling-A review, Renew. Sustain. Energy Rev. 113(2019) 109230. [23] N. Asim, M.H. Amin, M.A. Alghoul, M. Badiei, M. Mohammad, S.S. Gasaymeh, N. Amin, K. Sopian, Key factors of desiccant-based cooling systems:Materials, Appl. Therm. Eng. 159(2019)113946. [24] P. Scovazzo, J. Burgos, A. Hoehn, P. Todd, Hydrophilic membrane-based humidity control, J Memb Sci 149(1)(1998)69-81. [25] P. Scovazzo, A. Hoehn, P. Todd, Membrane porosity and hydrophilic membrane-based dehumidification performance, J. Membr. Sci. 167(2) (2000)217-225. [26] Q.W. Su, H. Lu, J.Y. Zhang, L.Z. Zhang, Fabrication and analysis of a highly hydrophobic and permeable block GO-PVP/PVDF membrane for membrane humidification-dehumidification desalination, J. Membr. Sci. 582(2019)367-380. [27] K.H. Kim, P.G. Ingole, H.K. Lee, Membrane dehumidification process using defect-free hollow fiber membrane, Int. J. Hydrog. Energy 42(38)(2017) 24205-24212. [28] Q.L. Cheng, F.S. Pan, B. Chen, Z.Y. Jiang, Preparation and dehumidification performance of composite membrane with PVA/gelatin-silica hybrid skin layer, J. Membr. Sci. 363(1-2)(2010)316-325. [29] M. Sultan, I.I. El-Sharkawy, T. Miyazaki, B.B. Saha, S. Koyama, An overview of solid desiccant dehumidification and air conditioning systems, Renew. Sustain. Energy Rev. 46(2015)16-29. [30] T.D. Bui, F. Chen, A. Nida, K.J. Chua, K.C. Ng, Experimental and modeling analysis of membrane-based air dehumidification, Sep. Purif. Technol. 144 (2015)114-122. [31] L.Z. Zhang, Mass diffusion in a hydrophobic membrane humidification/ dehumidification process:the effects of membrane characteristics, Sep. Sci. Technol. 41(8)(2006)1565-1582. [32] A.H. Bedane, M. Eić, M. Farmahini-Farahani, H.N. Xiao, Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films, J. Membr. Sci. 493(2015)46-57. [33] D.I. Petukhov, A.A. Eliseev, A.A. Poyarkov, A.V. Lukashin, A.A. Eliseev, Porous polypropylene membrane contactors for dehumidification of gases, Nanosyst.: Phys. Chem. Math.(2017)798-803. [34] Y.W. Ouyang, L.Z. Zhang, Conjugate heat and mass transfer in a skewed flow hollow fiber membrane bank used for liquid desiccant air dehumidification, Int. J. Heat Mass Transf. 93(2016)23-40. [35] K. Kneifel, S. Nowak, W. Albrecht, R. Hilke, R. Just, K.V. Peinemann, Hollow fiber membrane contactor for air humidity control:Modules and membranes, J. Membr. Sci. 276(1-2)(2006)241-251. [36] Y. Liao, R. Wang, A.G. Fane, Engineering superhydrophobic surface on poly (vinylidene fluoride) nanofiber membranes for direct contact membrane distillation, J. Membr. Sci. 440(2013)77-87. [37] X. Gao, S.S. Wen, B.L. Yang, J. Xue, H.H. Wang, Enhanced air filtration performance under high-humidity condition through electrospun membranes with optimized structure, Chin. J. Chem. Eng. 28(7)(2020) 1788-1795. [38] J.T. Xiao, Q. Sun, L.Y. Liu, Z.W. Ding, Monitoring the spontaneous wetting process of hydrophobic microporous membrane assisted by alternating current impedance spectroscopy, Chin. J. Chem. Eng. 39(2021)96-102. [39] J. Pantelic, E. Teitelbaum, M. Bozlar, S. Kim, F. Meggers, Development of moisture absorber based on hydrophilic nonporous membrane mass exchanger and alkoxylated siloxane liquid desiccant, Energy Build. 160 (2018)34-43. [40] A. Ito, Dehumidification of air by a hygroscopic liquid membrane supported on surface of a hydrophobic microporous membrane, J. Membr. Sci. 175(1) (2000)35-42. [41] L. Mei, Y.J. Dai, A technical review on use of liquid-desiccant dehumidification for air-conditioning application, Renew. Sustain. Energy Rev. 12(3)(2008) 662-689. [42] G.M. Ge, M.R.H. Abdel-Salam, R.W. Besant, C.J. Simonson, Research and applications of liquid-to-air membrane energy exchangers in building HVAC systems at University of Saskatchewan:a review, Renew. Sustain. Energy Rev. 26(2013)464-479. [43] G.H. Zhou, K. Jiang, Z.L. Wang, X.M. Liu, Insight into the behavior at the hygroscopicity and interface of the hydrophobic imidazolium-based ionic liquids, Chin. J. Chem. Eng. 31(2021)42-55. [44] A. Giampieri, Z.W. Ma, A. Smallbone, A.P. Roskilly, Thermodynamics and economics of liquid desiccants for heating, ventilation and air-conditioning-An overview, Appl. Energy 220(2018)455-479. [45] G.A. Longo, A. Gasparella, Experimental and theoretical analysis of heat and mass transfer in a packed column dehumidifier/regenerator with liquid desiccant, Int. J. Heat Mass Transf. 48(25-26)(2005)5240-5254. [46] C. Isetti, E. Nannei, A. Magrini, On the application of a membrane air-liquid contactor for air dehumidification, Energy Build. 25(3)(1997)185-193. [47] P. Scovazzo, Testing and evaluation of room temperature ionic liquid (RTIL) membranes for gas dehumidification, J. Membr. Sci. 355(1-2)(2010)7-17. [48] Y.M. Luo, S.Q. Shao, F. Qin, C.Q. Tian, H.X. Yang, Investigation on feasibility of ionic liquids used in solar liquid desiccant air conditioning system, Sol. Energy 86(9)(2012)2718-2724. [49] Y.M. Luo, S.Q. Shao, H.B. Xu, C.Q. Tian, Dehumidification performance of [EMIM]BF4, Appl. Therm. Eng. 31(14-15)(2011)2772-2777. [50] M. Qu, O. Abdelaziz, X.G. Sun, H.X. Yin, Aqueous solution of[EMIM][OAc]: Property formulations for use in air conditioning equipment design, Appl. Therm. Eng. 124(2017)271-278. [51] M.M. Rafique, P. Gandhidasan, H.M.S. Bahaidarah, Liquid desiccant materials and dehumidifiers-A review, Renew. Sustain. Energy Rev. 56(2016)179-195. [52] Q. Cheng, Y. Xu, X.S. Zhang, Experimental investigation of an electrodialysis regenerator for liquid desiccant, Energy Build. 67(2013)419-425. [53] A.A. Al-Farayedhi, P. Gandhidasan, S. Younus Ahmed, Regeneration of liquid desiccants using membrane technology, Energy Convers. Manag. 40(13) (1999)1405-1411. [54] Y. Yao, Y.B. Yu, Z.Y. Zhu, Experimental investigations on surface vapor pressure models for LiCl-CaCl2 desiccant solutions, Sol. Energy 126(2016)1-13. [55] T. Wen, L. Lu, Y.D. Nie, H. Zhong, Development and investigation on the dehumidification and corrosion resistance performance of a new mixed liquid desiccant, Int. J. Heat Mass Transf. 130(2019)72-82. [56] L.Z. Zhang, Fabrication of a lithium chloride solution based composite supported liquid membrane and its moisture permeation analysis, J. Memb. Sci. 276(1)(2006)91-100. [57] G. Annadurai, S. Tiwari, M.P. Maiya, Experimental performance comparison of adiabatic and internally-cooled membrane dehumidifiers, Int. J. Low-Carbon Technol. 13(3)(2018)240-249. [58] S.M. Huang, M.L. Yang, X.X. Yang, Performance analysis of a quasi-counter flow parallel-plate membrane contactor used for liquid desiccant air dehumidification, Appl. Therm. Eng. 63(1)(2014)323-332. [59] D.G. Moghaddam, P. LePoudre, G.M. Ge, R.W. Besant, C.J. Simonson, Smallscale single-panel liquid-to-air membrane energy exchanger (LAMEE) test facility development, commissioning and evaluating the steady-state performance, Energy Build. 66(2013)424-436. [60] A. Fakharnezhad, P. Keshavarz, Experimental investigation of gas dehumidification by tri-ethylene glycol in hollow fiber membrane contactors, J. Ind. Eng. Chem. 34(2016)390-396. [61] S. Bergero, A. Chiari, Experimental and theoretical analysis of air humidification/dehumidification processes using hydrophobic capillary contactors, Appl. Therm. Eng. 21(11)(2001)1119-1135. [62] S.M. Huang, L.Z. Zhang, L.X. Pei, Transport phenomena in a cross-flow hollow fibre membrane bundle used for liquid desiccant air dehumidification, Indoor Built Environ. 22(3)(2013)559-574. [63] X.H. Liu, X.M. Chang, J.J. Xia, Y. Jiang, Performance analysis on the internally cooled dehumidifier using liquid desiccant, Build. Environ. 44(2)(2009)299-308. [64] X.J. Chen, Y.H. Su, D. Aydin, H.Y. Bai, H. Jarimi, X.X. Zhang, S. Riffat, Experimental investigation of a polymer hollow fibre integrated liquid desiccant dehumidification system with aqueous potassium formate solution, Appl. Therm. Eng. 142(2018)632-643. [65] S.M. Huang, W.Z. Yuan, M.L. Yang, Advances in heat and mass transfer in the membrane-based dehumidifiers and liquid desiccant air dehumidification systems, Int. J. Heat Mass Transf. 139(2019)881-906. [66] L. Chun, G.C. Gong, X. Fang, P. Peng, Thermodynamic performance assessment of vacuum membrane-based dehumidification and air carrying energy radiant air-conditioning system (VMD-ACERS), Chin. J. Chem. Eng. 34(2021) 217-227. [67] S. Misha, S. Mat, M.H. Ruslan, K. Sopian, Review of solid/liquid desiccant in the drying applications and its regeneration methods, Renew. Sustain. Energy Rev. 16(7)(2012)4686-4707. [68] Z.J. Shen, J.C. Min, Non-equilibrium thermodynamic analysis of coupled heat and moisture transfer across a membrane, Chin. J. Chem. Eng.(2021), https:// doi.org/10.1016/j.cjche.2021.12.020. [69] L.Z. Zhang, S.M. Huang, Coupled heat and mass transfer in a counter flow hollow fiber membrane module for air humidification, Int. J. Heat Mass Transf. 54(5-6)(2011)1055-1063. [70] J.G. Wijmans, R.W. Baker, The solution-diffusion model:a review, J. Membr. Sci. 107(1-2)(1995)1-21. [71] S.J. Metz, W.J.C. van de Ven, J. Potreck, M.H.V. Mulder, M. Wessling, Transport of water vapor and inert gas mixtures through highly selective and highly permeable polymer membranes, J. Membr. Sci. 251(1-2)(2005)29-41. [72] S.J. Metz, W.J.C.V. de Ven, M.H.V. Mulder, M. Wessling, Mixed gas water vapor/N2 transport in poly (ethylene oxide) poly (butylene terephthalate) block copolymers, J. Membr. Sci. 266(1-2)(2005)51-61. [73] P.G. Ingole, W.K. Choi, I.H. Baek, H.K. Lee, Highly selective thin film composite hollow fiber membranes for mixed vapor/gas separation, RSC Adv. 5(96) (2015)78950-78957. [74] P.G. Ingole, M. Sohail, A.M. Abou-Elanwar, M. Irshad Baig, J.D. Jeon, W.K. Choi, H. Kim, H.K. Lee, Water vapor separation from flue gas using MOF incorporated thin film nanocomposite hollow fiber membranes, Chem. Eng. J. 334(2018)2450-2458. [75] X.H. An, P.G. Ingole, W.K. Choi, H.K. Lee, S.U. Hong, J.D. Jeon, Development of thin film nanocomposite membranes incorporated with sulfated bcyclodextrin for water vapor/N2 mixture gas separation, J. Ind. Eng. Chem. 59(2018)259-265. [76] B. Bolto, M. Hoang, Z.L. Xie, A review of water recovery by vapour permeation through membranes, Water Res. 46(2)(2012)259-266. [77] M. Faria, C. Moreira, T. Eusébio, P. Brogueira, M.N. Pinho, Hybrid flat sheet cellulose acetate/silicon dioxide ultrafiltration membranes for uremic blood purification, Cellulose 27(7)(2020)3847-3869. [78] L.Z. Zhang, Y.Y. Wang, C.L. Wang, H. Xiang, Synthesis and characterization of a PVA/LiCl blend membrane for air dehumidification, J. Membr. Sci. 308(1-2) (2008)198-206. [79] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320(1-2)(2008)390-400. [80] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci. 62(2)(1991)165-185. [81] J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev. 38(5)(2009)1477-1504. [82] R. Xing, Y.X. Rao, W. TeGrotenhuis, N. Canfield, F. Zheng, D.W. Winiarski, W. Liu, Advanced thin zeolite/metal flat sheet membrane for energy efficient air dehumidification and conditioning, Chem. Eng. Sci. 104(2013)596-609. [83] Y.W. Wang, Q. Han, Q.B. Zhou, X.D. Du, L.X. Xue, Molecular sieving effect of zeolites on the properties of PVA based composite membranes for total heat recovery in ventilation systems, RSC Adv. 6(71)(2016)66767-66773. [84] K.L. Wang, S.H. McCray, D.D. Newbold, E.L. Cussler, Hollow fiber air drying, J. Membr. Sci. 72(3)(1992)231-244. [85] S.K. Lim, K. Goh, T.H. Bae, R. Wang, Polymer-based membranes for solventresistantnanofiltration:areview, Chin. J. Chem. Eng.25(11)(2017)1653-1675. [86] L.D. Jia, X.F. Xu, H.J. Zhang, J.P. Xu, Permeation of nitrogen and water vapor through sulfonated polyetherethersulfone membrane, J. Polym. Sci. B Polym. Phys. 35(13)(1997)2133-2140. [87] L.D. Jia, X.F. Xu, H.J. Zhang, J.P. Xu, Sulfonation of polyetheretherketone and its effects on permeation behavior to nitrogen and water vapor, J. Appl. Polym. Sci. 60(8)(1996)1231-1237. [88] S.Z. Liu, F. Wang, T.L. Chen, Synthesis of poly (ether ether ketone) s with high content of sodium sulfonate groups as gas dehumidification membrane materials, Macromol. Rapid Commun. 22(8)(2001)579-582. [89] S.M. Allen, M. Fujii, V. Stannett, H.B. Hopfenberg, J.L. Williams, The barrier properties of Polyacrylnitrile, J. Memb. Sci. 2(1977)153-163. [90] J.J. Yan, Y.P. Huang, Y.E. Miao, W.W. Tjiu, T.X. Liu, Polydopamine-coated electrospun poly (vinyl alcohol)/poly (acrylic acid) membranes as efficient dye adsorbent with good recyclability, J. Hazard. Mater. 283(2015)730-739. [91] C.W. Chen, J. Xie, F.X. Yang, H.L. Zhang, Z.W. Xu, J.L. Liu, Y.J. Chen, Development of moisture-absorbing and antioxidant active packaging film based on poly (vinyl alcohol) incorporated with green tea extract and its effect on the quality of dried eel, J. Food Process. Preserv. 42(1)(2018) e13374. [92] D.T. Bui, A. Nida, K.C. Ng, K.J. Chua, Water vapor permeation and dehumidification performance of poly (vinyl alcohol)/lithium chloride composite membranes, J. Membr. Sci. 498(2016)254-262. [93] Q.J. Gao, Y.X. Wang, L. Xu, G.Q. Wei, Z.T. Wang, Proton-exchange sulfonated poly (ether ether ketone)(SPEEK)/SiOx-S composite membranes in direct methanol fuel cells, Chin. J. Chem. Eng. 17(2)(2009)207-213. [94] R. Narducci, M. di Vona, A. Marrocchi, G. Baldinelli, Stabilized SPEEK membranes with a high degree of sulfonation for enthalpy heat exchangers, Coatings 8(5)(2018)190. [95] G. Chen, X.S. Zhang, J.H. Wang, S.B. Zhang, Synthesis and characterization of soluble poly (amide-imide) s bearing triethylamine sulfonate groups as gas dehumidification membrane material, J. Appl. Polym. Sci. 106(5)(2007)3179-3184. [96] F.H. Akhtar, M. Kumar, L.F. Villalobos, H. Vovusha, R. Shevate, U. Schwingenschlögl, K.V. Peinemann, Polybenzimidazole-based mixed membranes with exceptionally high water vapor permeability and selectivity, J. Mater. Chem. A 5(41)(2017)21807-21819. [97] M.A. Imran, T.T. Li, X.M. Wu, X.M. Yan, A.S. Khan, G.H. He, Sulfonated polybenzimidazole/amine functionalized titanium dioxide (sPBI/AFT) composite electrolyte membranes for high temperature proton exchange membrane fuel cells usage, Chin. J. Chem. Eng. 28(9)(2020)2425-2437. [98] F.H. Akhtar, H. Vovushua, L.F. Villalobos, R. Shevate, M. Kumar, S.P. Nunes, U. Schwingenschlögl, K.V. Peinemann, Highways for water molecules:Interplay between nanostructure and water vapor transport in block copolymer membranes, J. Membr. Sci. 572(2019)641-649. [99] N. Azizi, T. Mohammadi, R.M. Behbahani, Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved CO2 separation performance, J. Energy Chem. 26(3)(2017)454-465. [100] F.S. Pan, H.P. Jia, Z.Y. Jiang, X.H. Zheng, Enhanced dehumidification performance of PVA membranes by tuning the water state through incorporating organophosphorus acid, J. Membr. Sci. 325(2)(2008)727-734. [101] G.M. Li, C.S. Feng, J.F. Li, J.Z. Liu, Y.L. Wu, Water vapor permeation and compressed air dehydration performances of modified polyimide membrane, Sep. Purif. Technol. 60(3)(2008)330-334. [102] B.W. Zhao, N. Peng, C.Z. Liang, W.F. Yong, T.S. Chung, Hollow fiber membrane dehumidification device for air conditioning system, Membranes (Basel)5(4) (2015)722-738. [103] S.H. Yun, P.G. Ingole, W.K. Choi, J.H. Kim, H.K. Lee, Synthesis of cross-linked amides and esters as thin film composite membrane materials yields permeable and selective material for water vapor/gas separation, J. Mater. Chem. A 3(15)(2015)7888-7899. [104] J.Y. Xu, H.Y. Wu, Z. Wang, Z.H. Qiao, S. Zhao, J.X. Wang, Recent advances on the membrane processes for CO2 separation, Chin. J. Chem. Eng. 26(11)(2018) 2280-2291. [105] Y. Shin, W. Liu, B. Schwenzer, S. Manandhar, D. Chase-Woods, M.H. Engelhard, R. Devanathan, L.S. Fifield, W.D. Bennett, B. Ginovska, D.W. Gotthold, Graphene oxide membranes with high permeability and selectivity for dehumidification of air, Carbon 106(2016)164-170. [106] D.I. Petukhov, E.A. Chernova, O.O. Kapitanova, O.V. Boytsova, R.G. Valeev, A.P. Chumakov, O.V. Konovalov, A.A. Eliseev, Thin graphene oxide membranes for gas dehumidification, J. Membr. Sci. 577(2019)184-194. [107] M.I. Baig, P.G. Ingole, W.K. Choi, S.R. Park, E.C. Kang, H.K. Lee, Development of carboxylated TiO2 incorporated thin film nanocomposite hollow fiber membranes for flue gas dehydration, J. Membr. Sci. 514(2016)622-635. [108] H.Q. Lin, S.M. Thompson, A. Serbanescu-Martin, J.G. Wijmans, K.D. Amo, K.A. Lokhandwala, T.C. Merkel, Dehydration of natural gas using membranes. Part I:Composite membranes, J. Membr. Sci. 413-414(2012)70-81. [109] P.G. Ingole, R.R. Pawar, M.I. Baig, J.D. Jeon, H.K. Lee, Thin film nanocomposite (TFN) hollow fiber membranes incorporated with functionalized acidactivated bentonite (ABn-NH) clay:towards enhancement of water vapor permeance and selectivity, J. Mater. Chem. A 5(39)(2017)20947-20958. [110] P.G. Ingole, W.K. Choi, G.B. Lee, H.K. Lee, Thin-film-composite hollow-fiber membranes for water vapor separation, Desalination 403(2017)12-23. [111] I. Blume, P.J.F. Schwering, M.H.V. Mulder, C.A. Smolders, Vapour sorption and permeation properties of poly (dimethylsiloxane) films, J. Membr. Sci. 61 (1991)85-97. [112] F.S. Pan, H.P. Jia, Z.Y. Jiang, X.H. Zheng, J.T. Wang, L. Cui, P (AA-AMPS)-PVA/ polysulfone composite hollow fiber membranes for propylene dehumidification, J. Membr. Sci. 323(2)(2008)395-403. [113] Y.F. Li, H.P. Jia, F.S. Pan, Z.Y. Jiang, Q.L. Cheng, Enhanced anti-swelling property and dehumidification performance by sodium alginate-poly (vinyl alcohol)/polysulfone composite hollow fiber membranes, J. Membr. Sci. 407-408(2012)211-220. [114] J.S. Cha, R. Li, K.K. Sirkar, Removal of water vapor and VOCs from nitrogen in a hydrophilic hollow fiber gel membrane permeator, J. Membr. Sci. 119(1) (1996)139-153. [115] J.W. Wu, H.J. Zhou, J.Y. Zhou, X. Zhu, B.W. Zhang, S.S. Feng, Z.X. Zhong, L.X. Kong, W.H. Xing, Meltblown fabric vs nanofiber membrane, which is better for fabricating personal protective equipments, Chin. J. Chem. Eng. 36(2021) 1-9. [116] K. Wahiduzzaman, J. Allmond, S. Stone, K. Harp, Mujibur, Synthesis and electrospraying of nanoscale MOF (metal organic framework) for highperformance CO2 adsorption membrane, Nanoscale Res. Lett. 12(1)(2017)6. [117] S.J. Poormohammadian, P. Darvishi, A.M.G. Dezfuli, Investigating the structural effect of electrospun nano-fibrous polymeric films on water vapor transmission, Chin. J. Chem. Eng. 27(1)(2019)100-109. [118] F. Yalcinkaya, B. Yalcinkaya, A. Pazourek, J. Mullerova, M. Stuchlik, J. Maryska, Surface modification of electrospun PVDF/PAN nanofibrous layers by low vacuum plasma treatment, Int. J. Polym. Sci. 2016(2016)1-9. [119] Y. Xu, S.H. Wang, Z.T. Li, Q. Xu, Q.H. Zhang, Polyimide fibers prepared by dryspinning process:imidization degree and mechanical properties, J. Mater. Sci. 48(22)(2013)7863-7868. [120] A.S. Levitt, R. Vallett, G. Dion, C.L. Schauer, Effect of electrospinning processing variables on polyacrylonitrile nanoyarns, J. Appl. Polym. Sci. 135 (25)(2018)46404. [121] M.B. Bazbouz, M. Taylor, D. Baker, M.E. Ries, P. Goswami, Dry-jet wet electrospinning of native cellulose microfibers with macroporous structures from ionic liquids, J. Appl. Polym. Sci. 136(10)(2019)47153. [122] B. Sun, Y.Z. Long, H.D. Zhang, M.M. Li, J.L. Duvail, X.Y. Jiang, H.L. Yin, Advances in three-dimensional nanofibrous macrostructures via electrospinning, Prog. Polym. Sci. 39(5)(2014)862-890. [123] R.D. Greenhalgh, W.S. Ambler, S.J. Quinn, E.S. Medeiros, M. Anderson, B. Gore, A. Menner, A. Bismarck, X. Li, N. Tirelli, J.J. Blaker, Hybrid Sol-gel inorganic/ gelatin porous fibres via solution blow spinning, J. Mater. Sci. 52(15)(2017) 9066-9081. [124] Y. Hou, C.T. Duan, G.D. Zhu, H. Luo, S.M. Liang, Y. Jin, N. Zhao, J. Xu, Functional bacterial cellulose membranes with 3D porous architectures:Conventional drying, tunable wettability and water/oil separation, J. Membr. Sci. 591(2019) 117312. [125] S. Choi, H.R. Kim, H.S. Kim, Fabrication of superabsorbent nanofibers based on sodium polyacrylate/poly (vinyl alcohol) and their water absorption characteristics, Polym. Int. 68(4)(2019)764-771. [126] L.W. Huang, J.T. Arena, S.S. Manickam, X.Q. Jiang, B.G. Willis, J.R. McCutcheon, Improved mechanical properties and hydrophilicity of electrospun nanofiber membranes for filtration applications by dopamine modification, J. Membr. Sci. 460(2014)241-249. [127] L. Dai, Y. Yao, F.J. Jiang, X.Q. Yang, X.J. Zhou, P. Xiong, Sorption and regeneration performance of novel solid desiccant based on PVA-LiCl electrospun nanofibrous membrane, Polym. Test. 64(2017)242-249. [128] X.W. Huang, S. Zhang, W. Xiao, J.C. Luo, B. Li, L. Wang, H.G. Xue, J.F. Gao, Flexible PDA@ACNTs decorated polymer nanofiber composite with superhydrophilicity and underwater superoleophobicity for efficient separation of oil-in-water emulsion, J. Membr. Sci. 614(2020)118500. [129] Z. ALOthman, A review:fundamental aspects of silicate mesoporous materials, Materials 5(12)(2012)2874-2902. [130] N.C. Burtch, H. Jasuja, K.S. Walton, Water stability and adsorption in metalorganic frameworks, Chem. Rev. 114(20)(2014)10575-10612. [131] N. Finn, C. Carlinet, G. Maurdev, Electrospun poly (acrylic acid)/lysine fibers and the interactive effects of moisture, heat, and cross-link density on their behavior, J. Appl. Polym. Sci. 132(2)(2015)41252. [132] J.H. Lee, S.G. Lee, Preparation and swelling behavior of moisture-absorbing polyurethane films impregnated with superabsorbent sodium polyacrylate particles, J. Appl. Polym. Sci. 133(38)(2016)43973. [133] G. Sennakesavan, M. Mostakhdemin, L.K. Dkhar, A. Seyfoddin, S.J. Fatihhi, Acrylic acid/acrylamide based hydrogels and its properties-A review, Polym. Degrad. Stab. 180(2020)109308. [134] H. Mittal, A. Al Alili, S.M. Alhassan, Adsorption isotherm and kinetics of water vapors on novel superporous hydrogel composites, Micropor. Mesopor. Mater. 299(2020)110106. [135] H. Omidian, J.G. Rocca, K. Park, Advances in superporous hydrogels, J. Control. Release 102(1)(2005)3-12. [136] E.M. Ahmed, Hydrogel:Preparation, characterization, and applications:a review, J. Adv. Res. 6(2)(2015)105-121. [137] Y.W. Huang, M. Zeng, J. Ren, J. Wang, L.R. Fan, Q.Y. Xu, Preparation and swelling properties of graphene oxide/poly (acrylic acid-co-acrylamide) super-absorbent hydrogel nanocomposites, Colloids Surf. A:Physicochem. Eng. Aspects 401(2012)97-106. [138] J.J. Li, L.T. Zhu, Z.H. Luo, Electrospun fibrous membrane with enhanced swithchable oil/water wettability for oily water separation, Chem. Eng. J. 287 (2016)474-481. [139] S.R. Zhang, J. Li, D.Y. Du, J.S. Qin, S.L. Li, W.W. He, Z.M. Su, Y.Q. Lan, A multifunctional microporous anionic metal-organic framework for columnchromatographic dye separation and selective detection and adsorption of Cr3+, J. Mater. Chem. A 3(46)(2015)23426-23434. [140] C.L. Zhang, F.H. Cao, J.L. Wang, Z.L. Yu, J. Ge, Y. Lu, Z.H. Wang, S.H. Yu, Highly stimuli-responsive Au nanorods/poly (N-isopropylacrylamide)(PNIPAM) composite hydrogel for smart switch, ACS Appl. Mater. Interfaces 9(29) (2017)24857-24863. [141] A. Vanangamudi, L.F. Dumée, E.D. Ligneris, M. Duke, X. Yang, Thermoresponsive nanofibrous composite membranes for efficient self-cleaning of protein foulants, J. Membr. Sci. 574(2019)309-317. [142] X.J. Zhang, L.M. Qiu, Moisture transport and adsorption on silica gel-calcium chloride composite adsorbents, Energy Convers. Manag. 48(1)(2007)320-326. [143] R.L. Liu, T. Gong, K. Zhang, C. Lee, Graphene oxide papers with high water adsorption capacity for air dehumidification, Sci. Rep. 7(1)(2017)9761. [144] R.U. Rehman, Q.N. Song, L. Peng, Y. Chen, X.H. Gu, Hydrophobic modification of SAPO-34 membranes for improvement of stability under wet condition, Chin. J. Chem. Eng. 27(10)(2019)2397-2406. [145] E.P. Ng, S. Mintova, Nanoporous materials with enhanced hydrophilicity and high water sorption capacity, Micropor. Mesopor. Mater. 114(1-3)(2008)1-26. [146] D.P. Serrano, G. Calleja, J.A. Botas, F.J. Gutierrez, Adsorption and hydrophobic properties of mesostructured MCM-41 and SBA-15 materials for volatile organic compound removal, Ind. Eng. Chem. Res. 43(22)(2004)7010-7018. [147] P. Tan, Y. Jiang, X.Q. Liu, L.B. Sun, Magnetically responsive porous materials for efficient adsorption and desorption processes, Chin. J. Chem. Eng. 27(6) (2019)1324-1338. [148] Y.L. Ji, W.J. Qian, Y.W. Yu, Q.F. An, L.F. Liu, Y. Zhou, C.J. Gao, Recent developments in nanofiltration membranes based on nanomaterials, Chin. J. Chem. Eng. 25(11)(2017)1639-1652. [149] C.Y. Tso, C.Y.H. Chao, Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems, Int. J. Refrig 35(6)(2012)1626-1638. [150] S.Z. Wang, C.M. McGuirk, A. D'Aquino, J.A. Mason, C.A. Mirkin, Metal-organic framework nanoparticles, Adv. Mater. 30(37)(2018)1800202. [151] A. Schaate, P. Roy, T. Preusse, S.J. Lohmeier, A. Godt, P. Behrens, Porous interpenetrated zirconium-organic frameworks (PIZOFs):a chemically versatile family of metal-organic frameworks, Chemistry 17(34)(2011) 9320-9325. [152] M. Niknam Shahrak, M. Niknam Shahrak, A. Shahsavand, N. Khazeni, X.F. Wu, S.G. Deng, Synthesis, gas adsorption and reliable pore size estimation of zeolitic imidazolate framework-7 using CO2 and water adsorption, Chin. J. Chem. Eng. 25(5)(2017)595-601. [153] M.S. Embaby, S.D. Elwany, W. Setyaningsih, M.R. Saber, The adsorptive properties of UiO-66 towards organic dyes:a record adsorption capacity for the anionic dye Alizarin Red S, Chin. J. Chem. Eng. 26(4)(2018)731-739. [154] G.R. Wu, Q.W. Fan, W.J. Sun, Z.W. Yu, Z.Q. Jia, J.G. Ma, Regulatable pervaporation performance of Zn-MOFs/polydimethylsiloxane mixed matrix pervaporation membranes, Chin. J. Chem. Eng.(2021) https://doi.org/10.1016/j.cjche.2021.02.011. [155] M.M. Zhai, T. Yoshioka, J.H. Yang, J.Q. Wang, D.L. Zhang, J.M. Lu, Y. Zhang, Molecular dynamics simulation of small gas molecule permeation through CAU-1 membrane, Chin. J. Chem. Eng. 33(2021)104-111. [156] S.J. Xiao, X.W. Huo, S.X. Fan, K. Zhao, S.W. Yu, X.Y. Tan, Design and synthesis of Al-MOF/PPSU mixed matrix membrane with pollution resistance, Chin. J. Chem. Eng. 29(2021)110-120. [157] G.B. Zhao, Q.R. Zheng, X. Zhang, W.D. Zhang, Adsorption equilibrium and the effect of honeycomb heat exchanging device on charge/discharge characteristic of methane on MIL-101(Cr) and activated carbon, Chin. J. Chem. Eng. 28(7)(2020)1964-1972. [158] X.L. Yan, Y.F. Li, X.Y. Hu, R. Feng, M. Zhou, D.Z. Han, Enhanced adsorption of phenol from aqueous solution by carbonized trace ZIF-8-decorated activated carbon pellets, Chin. J. Chem. Eng. 33(2021)279-285. [159] X.Q. Zheng, Y.L. Shen, S.T. Wang, K. Huang, D.P. Cao, Selective adsorption of SF6 in covalent- and metal-organic frameworks, Chin. J. Chem. Eng. 39(2021) 88-95. [160] Q.Q. He, Q. Chen, M. Lü, X.T. Liu, Adsorption behavior of rhodamine B on UiO-66, Chin. J. Chem. Eng. 22(Z1)(2014)1285-1290. [161] S. Han, Y.G. Huang, T. Watanabe, S. Nair, K.S. Walton, D.S. Sholl, J. Carson Meredith, MOF stability and gas adsorption as a function of exposure to water, humid air, SO2, and NO2, Micropor. Mesopor. Mater. 173(2013)86-91. [162] R.G. AbdulHalim, P.M. Bhatt, Y. Belmabkhout, A. Shkurenko, K. Adil, L.J. Barbour, M. Eddaoudi, A fine-tuned metal-organic framework for autonomous indoor moisture control, J. Am. Chem. Soc. 139(31)(2017) 10715-10722. [163] P. Küsgens, M. Rose, I. Senkovska, H. Fröde, A. Henschel, S. Siegle, S. Kaskel, Characterization of metal-organic frameworks by water adsorption, Micropor. Mesopor. Mater. 120(3)(2009)325-330. [164] H. Furukawa, F. Gándara, Y.B. Zhang, J.C. Jiang, W.L. Queen, M.R. Hudson, O.M. Yaghi, Water adsorption in porous metal-organic frameworks and related materials, J. Am. Chem. Soc. 136(11)(2014)4369-4381. [165] G. Akiyama, R. Matsuda, H. Sato, A. Hori, M. Takata, S. Kitagawa, Effect of functional groups in MIL-101 on water sorption behavior, Micropor. Mesopor. Mater. 157(2012)89-93. [166] M. Sarfraz, M. Ba-Shammakh, Water-stable ZIF-300/Ultrason?Mixed-matrix membranes for selective CO2 capture from humid post combustion flue gas, Chin. J. Chem. Eng. 26(5)(2018)1012-1021. [167] J. Quirós, K. Boltes, S. Aguado, R.G. de Villoria, J.J. Vilatela, R. Rosal, Antimicrobial metal-organic frameworks incorporated into electrospun fibers, Chem. Eng. J. 262(2015)189-197. [168] J. Canivet, A. Fateeva, Y.M. Guo, B. Coasne, D. Farrusseng, Water adsorption in MOFs:fundamentals and applications, Chem. Soc. Rev. 43(16)(2014)5594-5617. [169] S.M. Towsif Abtab, D. Alezi, P.M. Bhatt, A. Shkurenko, Y. Belmabkhout, H. Aggarwal, Ł.J. Weseliński, N. Alsadun, U. Samin, M.N. Hedhili, M. Eddaoudi, Reticular chemistry in action:a hydrolytically stable MOF capturing twice its weight in adsorbed water, Chem 4(1)(2018)94-105. [170] H.Z. Zhao, Q.W. Li, Z.Y. Wang, T.H. Wu, M. Zhang, Synthesis of MIL-101(Cr) and its water adsorption performance, Micropor. Mesopor. Mater. 297(2020) 110044. [171] H. Yang, H. Wu, F.S. Pan, M.D. Wang, Z.Y. Jiang, Q.F. Cheng, C. Huang, Waterselective hybrid membranes with improved interfacial compatibility from mussel-inspired dopamine-modified alginate and covalent organic frameworks, Chin. J. Chem. Eng. 28(1)(2020)90-97. [172] S.M. Xu, L.R. Fan, M. Zeng, J. Wang, Q. Liu, Swelling properties and kinetics of CaCl2/polyacrylamide hygroscopic hybrid hydrogels, Colloids Surf. A: Physicochem. Eng. Aspects 371(1-3)(2010)59-63. [173] F. Zhao, X. Zhou, Y. Liu, Y. Shi, Y. Dai, G. Yu, Super moisture-absorbent gels for all-weather atmospheric water harvesting, Adv. Mater. 31(10)(2019) e1806446. [174] Z.B. Liu, W.Q. Gao, X. Qi, F.F. Lou, H.W. Lang, Experimental study on salt-metal organic framework composites for water absorption, Inorg. Chim. Acta 500 (2020)119214. [175] E. Hastürk, S.P. Höfert, B. Topalli, C. Schlüsener, C. Janiak, Shaping of MOFs via freeze-casting method with hydrophilic polymers and their effect on textural properties, Micropor. Mesopor. Mater. 295(2020)109907. [176] H.J. An, M. Sarker, D.K. Yoo, S.H. Jhung, Water adsorption/desorption over metal-organic frameworks with ammonium group for possible application in adsorption heat transformation, Chem. Eng. J. 373(2019)1064-1071. [177] J. Lee, D.Y. Lee, Sorption characteristics of a novel polymeric desiccant, Int. J. Refrig 35(7)(2012)1940-1949. [178] Y.F. Zhang, L. Wu, X.F. Wang, J.Y. Yu, B. Ding, Super hygroscopic nanofibrous membrane-based moisture pump for solar-driven indoor dehumidification, Nat. Commun. 11(1)(2020)3302. [179] D.Y. Li, X. Tang, S.S. Feng, Humidity-control assists high-efficient coal fly ash removal by PTFE membrane, Chin. J. Chem. Eng. 40(2021)88-95. [180] S.M. Huang, L.Z. Zhang, Researches and trends in membrane-based liquid desiccant air dehumidification, Renew. Sustain. Energy Rev. 28(2013)425-440. [181] L.M. Robeson, Polymer membranes for gas separation, Curr. Opin. Solid State Mater. Sci. 4(6)(1999)549-552. [182] P. Tantikhajorngosol, N. Laosiripojana, R. Jiraratananon, S. Assabumrungrat, A modeling study of module arrangement and experimental investigation of single stage module for physical absorption of biogas using hollow fiber membrane contactors, J. Membr. Sci. 549(2018)283-294. [183] N.B. McKeown, Polymers of intrinsic microporosity, ISRN Mater. Sci. 2012 (2012)1-16. [184] Z.H. Qiao, S. Zhao, M.L. Sheng, J.X. Wang, S.C. Wang, Z. Wang, C.L. Zhong, M.D. Guiver, Metal-induced ordered microporous polymers for fabricating largearea gas separation membranes, Nat. Mater. 18(2)(2019)163-168. [185] W.J. Ding, M. Chen, M. Zhou, Z.X. Zhong, Z.L. Cui, W.H. Xing, Fouling behavior of poly (vinylidene fluoride)(PVDF) ultrafiltration membrane by polyvinyl alcohol (PVA) and chemical cleaning method, Chin. J. Chem. Eng. 28(12) (2020)3018-3026. [186] B. Yang, W.X. Yuan, F. Gao, B.H. Guo, A review of membrane-based air dehumidification, Indoor Built Environ. 24(1)(2015)11-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||