中国化学工程学报 ›› 2022, Vol. 41 ›› Issue (1): 109-120.DOI: 10.1016/j.cjche.2021.12.014
Shichao Yu1,2, Rui Liao1,2, Baojun Yang1,2, Chaojun Fang2,3, Zhentang Wang1,4, Yuling Liu1,2, Baiqiang Wu1,2, Jun Wang1,2, Guanzhou Qiu1,2
收稿日期:
2021-06-30
修回日期:
2021-12-09
出版日期:
2022-01-28
发布日期:
2022-02-25
通讯作者:
Jun Wang,E-mail address:wjwq2000@126.com
基金资助:
Shichao Yu1,2, Rui Liao1,2, Baojun Yang1,2, Chaojun Fang2,3, Zhentang Wang1,4, Yuling Liu1,2, Baiqiang Wu1,2, Jun Wang1,2, Guanzhou Qiu1,2
Received:
2021-06-30
Revised:
2021-12-09
Online:
2022-01-28
Published:
2022-02-25
Contact:
Jun Wang,E-mail address:wjwq2000@126.com
Supported by:
摘要: There has been a strong interest in technologies suited for mining and processing of low-grade ores because of the rapid depletion of mineral resources in the world. In most cases, the extraction of copper from such raw materials is achieved by applying the leaching procedures. However, its low extraction efficiency and the long extraction period limit its large-scale commercial applications in copper recovery, even though bioleaching has been widely employed commercially for heap and dump bioleaching of secondary copper sulfide ores. Overcoming the technical challenges requires a better understanding of leaching kinetics and on-site microbial activities. Herein, this paper reviews the current status of main commercial biomining operations around the world, identifies factors that affect chalcocite dissolution both in chemical leaching and bioleaching, summarizes the related kinetic research, and concludes with a discussion of two on-site chalcocite heap leaching practices. Further, the challenges and innovations for the future development of chalcocite hydrometallurgy are presented in the end.
Shichao Yu, Rui Liao, Baojun Yang, Chaojun Fang, Zhentang Wang, Yuling Liu, Baiqiang Wu, Jun Wang, Guanzhou Qiu. Chalcocite (bio)hydrometallurgy—current state, mechanism, and future directions: A review[J]. 中国化学工程学报, 2022, 41(1): 109-120.
Shichao Yu, Rui Liao, Baojun Yang, Chaojun Fang, Zhentang Wang, Yuling Liu, Baiqiang Wu, Jun Wang, Guanzhou Qiu. Chalcocite (bio)hydrometallurgy—current state, mechanism, and future directions: A review[J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 109-120.
[1] D.A. Singer, Future copper resources, Ore Geol. Rev. 86(2017)271-279. [2] G.M. Mudd, S.M. Jowitt, Growing global copper resources, reserves and production:discovery is not the only control on supply, Econ. Geol. 113(6) (2018)1235-1267. [3] S. Northey, S. Mohr, G.M. Mudd, Z. Weng, D. Giurco, Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining, Resour. Conserv. Recycl. 83(2014)190-201. [4] J.J. Chen, Z.H. Wang, Y.F. Wu, L.Q. Li, B. Li, D.A. Pan, T.Y. Zuo, Environmental benefits of secondary copper from primary copper based on life cycle assessment in China, Resour. Conserv. Recycl. 146(2019)35-44. [5] M. Hong, S. Liu, X. Huang, B. Yang, C. Zhao, S. Yu, Y. Liu, G. Qiu, J. Wang, A review on bornite (bio) leaching, Miner. Eng. 174(2021)107245. [6] D.G. Dixon, D.D. Mayne, K.G. Baxter, GalvanoxTM-a novel galvanicallyassisted atmospheric leaching technology for copper concentrates, Can. Metall. Q. 47(3)(2008)327-336. [7] J.D. Batty, G.V. Rorke, Development and commercial demonstration of the BioCOPTM thermophile process, Hydrometallurgy 83(1-4)(2006)83-89. [8] J. Peacey, X.J. Guo, E. Robles, Copper hydrometallurgy-current status, preliminary economics, future direction and positioning versus smelting, Trans. Nonferrous Met. Soc. China 14(3)(2004)560-568. [9] D. Dreisinger, Copper leaching from primary sulfides:Options for biological and chemical extraction of copper, Hydrometallurgy 83(1-4)(2006)10-20. [10] H.R. Watling, Chalcopyrite hydrometallurgy at atmospheric pressure:1. Review of acidic sulfate, sulfate-chloride and sulfate-nitrate process options, Hydrometallurgy 140(2013)163-180. [11] J.F. Li, H.Y. Yang, L.L. Tong, W. Sand, Some aspects of industrial heap bioleaching technology:from basics to practice, Miner. Process. Extr. Metall. Rev.(2021), https://doi.org/10.1080/108829508.2021.1893720. [12] Y. Ghorbani, J.P. Franzidis, J. Petersen, Heap leaching technology-current state, innovations, and future directions:a review, Miner. Process. Extr. Metall. Rev. 37(2)(2016)73-119. [13] H.R. Watling, The bioleaching of sulphide minerals with emphasis on copper sulphides-A review, Hydrometallurgy 84(1-2)(2006)81-108. [14] C.L. Brierley, Mining Biotechnology:Research to Commercial Development and Beyond. Biomining, Springer Berlin Heidelberg, Berlin, Heidelberg (1997) 3-17. [15] X.L. Sun, B.Z. Chen, X.Y. Yang, Y.Y. Liu, Technological conditions and kinetics of leaching copper from complex copper oxide ore, J. Central South Univ. Technol. 16(6)(2009)936-941. [16] M.L. Liu, J.K. Wen, G.K. Tan, G.L. Liu, B. Wu, Experimental studies and pilot plant tests for acid leaching of low-grade copper oxide ores at the Tuwu Copper Mine, Hydrometallurgy 165(2016)227-232. [17] W.N. Mu, F.H. Cui, H.X. Xin, Y.C. Zhai, Q. Xu, A novel process for simultaneously extracting Ni and Cu from mixed oxide-sulfide coppernickel ore with highly alkaline gangue via FeCl3·6H2O chlorination and water leaching, Hydrometallurgy 191(2020)105187. [18] S. Bustos, S. Castro, R. Montealegre, The Sociedad Minera Pudahuel bacterial thin-layer leaching process at Lo Aguirre, FEMS Microbiol. Rev. 11(1-3)(1993) 231-235. [19] P. Kodali, T. Depci, N. Dhawan, X.M. Wang, C.L. Lin, J.D. Miller, Evaluation of stucco binder for agglomeration in the heap leaching of copper ore, Miner. Eng. 24(8)(2011)886-893. [20] J.D. Miller, C.L. Lin, C. Garcia, H. Arias, Ultimate recovery in heap leaching operations as established from mineral exposure analysis by X-ray microtomography, Int. J. Miner. Process. 72(1-4)(2003)331-340. [21] B.N. Schumer, R.J. Stegen, M.D. Barton, J.B. Hiskey, R.T. Downs, Mineralogical profile of supergene sulfide ore in the western copper area, morenci mine, Arizona, Can. Mineral. 57(3)(2019)391-401. [22] C. Green, J. Robertson, J.O. Marsden, Pressure leaching of copper concentrates at Morenci, Arizona-10 years of experience, Miner. Metall. Process. 35(3) (2018)109-116. [23] J.O. Marsden, J.C. Wilmot, R.J. Smith, Medium-temperature pressure leaching of copper concentrates-Part IV:Application at Morenci, Arizona, Min. Metall. Explor. 24(4)(2007)226-236. [24] H.A. Phyo, Y. Jia, Q.Y. Tan, S.G. Zhao, X.X. Liang, R.M. Ruan, X.P. Niu, Effect of particle size on chalcocite dissolution kinetics in column leaching under controlled Eh and its implications, Physicochem. Probl. Miner. Process. 56(4) (2020)676-692. [25] R.M. Ruan, G. Zou, S.P. Zhong, Z.L. Wu, B. Chan, D.Z. Wang, Why Zijinshan copper bioheapleaching plant works efficiently at low microbial activity-Study on leaching kinetics of copper sulfides and its implications, Miner. Eng. 48(2013)36-43. [26] X.Y. Song, R.R. Keays, M.F. Zhou, L. Qi, C. Ihlenfeld, J.F. Xiao, Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China, Geochim. Cosmochim. Acta 73(2)(2009)404-424. [27] Z. Fang, Q. Chen, Effect of technological factors on bacterial leaching of lowgrade Ni-Cu sulfide ore, Trans. Nonferrous Met. Soc. China. 11(2001)774-777. [28] K. Soe, R.M. Ruan, Y. Jia, Q.Y. Tan, Z.T. Wang, J.F. Shi, C.G. Zhong, H.Y. Sun, Influence of jarosite precipitation on iron balance in heap bioleaching at Monywa copper mine, J. Min. Inst. 247(2021)1-12. [29] Y. Jia, H.Y. Sun, D.F. Chen, H.S. Gao, R.M. Ruan, Characterization of microbial community in industrial bioleaching heap of copper sulfide ore at Monywa mine, Myanmar, Hydrometallurgy 164(2016)355-361. [30] A.H.G. Mitchell, W. Myint, K. Lynn, M.T. Htay, M. Oo, T. Zaw, Geology of the high sulfidation copper deposits, monywa mine, Myanmar, Resour. Geol. 61 (1)(2011)1-29. [31] C. Zhong, J. Shi, L. Zhang, H. Sun, Q. Tan, R. Sheng, Y. Jia, Study on Key Factors of Microbial Activity in S&K Mine in Myanmar, Non-Ferrous Met. Metall. 2 (2019)6-9.(in Chinese) [32] P.E. Soto, P.A. Galleguillos, M.A. Serón, V.J. Zepeda, C.S. Demergasso, C. Pinilla, Parameters influencing the microbial oxidation activity in the industrial bioleaching heap at Escondida mine, Chile, Hydrometallurgy 133(2013)51-57. [33] C. Demergasso, R. Véliz, P. Galleguillos, S. Marín, M. Acosta, V. Zepeda, J. Zeballos, F. Henríquez, R. Pizarro, J. Bekios-Calfa, Decision support system for bioleaching processes, Hydrometallurgy 181(2018)113-122. [34] A.H. Kaksonen, N.J. Boxall, Y. Gumulya, H.N. Khaleque, C. Morris, T. Bohu, K.Y. Cheng, K.M. Usher, A.M. Lakaniemi, Recent progress in biohydrometallurgy and microbial characterisation, Hydrometallurgy 180(2018)7-25. [35] C.L. Brierley, How will biomining be applied in future?, Trans Nonferrous Met. Soc. China 18(6)(2008)1302-1310. [36] J.K. Wen, B.W. Chen, H. Shang, G.C. Zhang, Research progress in biohydrometallurgy of rare metals and heavy nonferrous metals with an emphasis on China, Rare Met. 35(6)(2016)433-442. [37] N. Marchevsky, M.M. Barroso Quiroga, A. Giaveno, E. Donati, Microbial oxidation of refractory gold sulfide concentrate by a native consortium, Trans. Nonferrous Met. Soc. China 27(5)(2017)1143-1149. [38] R. Oyarzun, J. Oyarzún, J. Lillo, H. Maturana, P. Higueras, Mineral deposits and Cu-Zn-As dispersion-contamination in stream sediments from the semiarid Coquimbo Region, Chile, Environ. Geol. 53(2)(2007)283-294. [39] M. Maley, W. van Bronswijk, H.R. Watling, Leaching of a low-grade, copper-nickel sulfide ore:2. Impact of aeration and pH on Cu recovery during abiotic leaching, Hydrometallurgy 98(2009)66-72. [40] X.J. Wang, L.Y. Ma, J.J. Wu, Y.H. Xiao, J.M. Tao, X.D. Liu, Effective bioleaching of low-grade copper ores:Insights from microbial cross experiments, Bioresour. Technol. 308(2020)123273. [41] J.W. Mao, J.D. Zhang, F. Pirajno, D. Ishiyama, H.M. Su, C.L. Guo, Y.C. Chen, Porphyry Cu-Au-Mo-epithermal Ag-Pb-Zn-distal hydrothermal Au deposits in the Dexing area, Jiangxi Province, East China-A linked ore system, Ore Geol. Rev. 43(1)(2011)203-216. [42] G. Velarde, Agglomeration control for heap leaching processes, Miner. Process. Extr. Metall. Rev. 26(3-4)(2005)219-231. [43] L. Y, Study on the test of enhanced agitation leaching of Muliashi low-grade complex copper oxide ore, Non-Ferrous Min. Metall. 34(4)(2018)32-37(in Chinese). [44] P. M., W. L., The new leaching process of muliashi copper oxide Ore, NonFerrous Min. Metall. 31(03)(2015)30-32(in Chinese). [45] L. Y., Application of novel technology in Zambia Luanshya Muliashi copper hydrometallurgical plant, Non-Ferrous Met. Eng. 5(1)(2015)36-40(in Chinese). [46] J. Wang, H. Zhao, W. Qin, X. Liu, G. Qiu, Industrial practice of biohydrometallurgy in Zambia, in:N.R. Neelameggham,S. Alam, H. Oosterhof, A. Jha, D. Dreisinger, S. Wang (Eds.), TMS Annu. Meet., Springer, Cham (2015)3-10. [47] E. Munnik, H. Singh, T. Uys, M. Bellino, J. Du Plessis, K. Fraser, G.B. Harris, Development and implementation of a novel pressure leach process for the recovery of cobalt and copper at Chambishi, Zambia, J. South African Inst. Min. Metall. 103(2003)1-9. [48] S.E. Keeling, M.L. Palmer, F.C. Caracatsanis, J.A. Johnson, H.R. Watling, Leaching of chalcopyrite and sphalerite using bacteria enriched from a spent chalcocite heap, Miner. Eng. 18(13-14)(2005)1289-1296. [49] S.H. Yin, L.M. Wang, E. Kabwe, X. Chen, R.F. Yan, K. An, L. Zhang, A.X. Wu, Copper bioleaching in China:review and prospect, Minerals 8(2)(2018)32. [50] M.R. Shayestehfar, S.K. Nasab, H. Mohammadalizadeh, Mineralogy, petrology, and chemistry studies to evaluate oxide copper ores for heap leaching in Sarcheshmeh copper mine, Kerman, Iran, J. Hazard. Mater. 154(1-3)(2008) 602-612. [51] S.H. Yin, L.M. Wang, A.X. Wu, M.L. Free, E. Kabwe, Enhancement of copper recovery by acid leaching of high-mud copper oxides:a case study at Yangla Copper Mine, China, J. Clean. Prod. 202(2018)321-331. [52] S. Panda, A. Akcil, N. Pradhan, H. Deveci, Current scenario of chalcopyrite bioleaching:a review on the recent advances to its heap-leach technology, Bioresour. Technol. 196(2015)694-706. [53] I. Yang, S. Choi, J. Park, Passivation of chalcopyrite in hydrodynamicbioleaching, Episodes 41(4)(2018)249-258. [54] C.L. Brierley, Biohydrometallurgical prospects, Hydrometallurgy 104(3-4) (2010)324-328. [55] C. Demergasso, Microbial succession during a heap bioleaching cycle of low grade copper sulphides. does this knowledge mean a real input for industrial process design and control?, Adv Mater. Res. 71-73(2009)21-27. [56] D.E. Rawlings, D.B. Johnson, The microbiology of biomining:development and optimization of mineral-oxidizing microbial consortia, Microbiology (Reading) 153(Pt 2)(2007)315-324. [57] J.A. Brierley, C.L. Brierley, Present and future commercial applications of biohydrometallurgy, Hydrometallurgy 59(2-3)(2001)233-239. [58] R.M. Ruan, X.Y. Liu, G. Zou, J.H. Chen, J.K. Wen, D.Z. Wang, Industrial practice of a distinct bioleaching system operated at low pH, high ferric concentration, elevated temperature and low redox potential for secondary copper sulfide, Hydrometallurgy 108(1-2)(2011)130-135. [59] R.M. Ruan, J.K. Wen, J.H. Chen, Bacterial heap-leaching:Practice in Zijinshan copper mine, Hydrometallurgy 83(1-4)(2006)77-82. [60] X.Y. Liu, R.B. Shu, B.W. Chen, B. Wu, J.K. Wen, Bacterial community structure change during pyrite bioleaching process:Effect of pH and aeration, Hydrometallurgy 95(3-4)(2009)267-272. [61] B. Wu, J.K. Wen, B.W. Chen, G.C. Yao, D.Z. Wang, Control of redox potential by oxygen limitation in selective bioleaching of chalcocite and pyrite, Rare Met. 33(5)(2014)622-627. [62] B. Wu, X.L. Yang, L.L. Cai, G.C. Yao, J.K. Wen, D.Z. Wang, The influence of pyrite on galvanic assisted leaching of chalcocite concentrates, Adv. Mater. Res. 825 (2013)459-463. [63] B. Wu, X.L. Yang, J.K. Wen, D.Z. Wang, Semiconductor-microbial mechanism of selective dissolution of chalcocite in bioleaching, ACS Omega 4(19)(2019) 18279-18288. [64] J. Wang, X.W. Gan, H.B. Zhao, M.H. Hu, K.Y. Li, W.Q. Qin, G.Z. Qiu, Dissolution and passivation mechanisms of chalcopyrite during bioleaching:DFT calculation, XPS and electrochemistry analysis, Miner. Eng. 98(2016)264-278. [65] X.X. Wang, R. Liao, H.B. Zhao, M.X. Hong, X.T. Huang, H. Peng, W. Wen, W.Q. Qin, G.Z. Qiu, C.M. Huang, J. Wang, Synergetic effect of pyrite on strengthening bornite bioleaching by Leptospirillum ferriphilum, Hydrometallurgy 176(2018)9-16. [66] B.J. Yang, M. Lin, J.H. Fang, R.Y. Zhang, W. Luo, X.X. Wang, R. Liao, B.Q. Wu, J. Wang, M. Gan, B. Liu, Y. Zhang, X.D. Liu, W.Q. Qin, G.Z. Qiu, Combined effects of jarosite and visible light on chalcopyrite dissolution mediated by Acidithiobacillus ferrooxidans, Sci. Total Environ. 698(2020)134175. [67] M.J. Buerger, N.W. Buerger, Low-chalcocite and high-chalcocite, Am. Mineral. 29(1944)55-65. [68] H.T. Evans, Copper coordination in low chalcocite and djurleite and other copper-rich sulfides, Am. Mineral. 66(1981)807-818. [69] M.J. Buerger, B.J. Wuensch, Distribution of atoms in high chalcocite, Cu2S, Science 141(3577)(1963)276-277. [70] H.T. Evans Jr., Djurleite (Cu1.94S) and low chalcocite (Cu2S):new crystal structure studies, Science 203(4378)(1979)356-358. [71] H.T. Evans, Crystal structure of low chalcocite, Nat. Phys. Sci. 232(29)(1971) 69-70. [72] K. Fu, F. Dong, Y. Ning, J. Wang, Bioleaching of cpper slphides and teir Crystal sucture, Acta Mineral. Sin. 36(2016)215-219.(in Chinese) [73] F.K. Crundwell, The influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals, Hydrometallurgy 21(2)(1988)155-190. [74] D. Lu, K. Jiang, C. Wang, D. Liu, Leaching mechanism of chalcocite and covellite, Nonferrous Met. Eng. 1(2002)31-35.(in Chinese) [75] G.M. O'Connor, J.J. Eksteen, A critical review of the passivation and semiconductor mechanisms of chalcopyrite leaching, Miner. Eng. 154(2020) 106401. [76] K. Osseo-Asare, Semiconductor electrochemistry and hydrometallurgical dissolution processes, Hydrometallurgy 29(1-3)(1992)61-90. [77] G. Deroubaix, P. Marcus, X-ray photoelectron spectroscopy analysis of copper and zinc oxides and sulphides, Surf. Interface Anal. 18(1)(1992)39-46. [78] I. Nakai, Y. Sugitani, K. Nagashima, Y. Niwa, X-ray photoelectron spectroscopic study of copper minerals, J. Inorg. Nucl. Chem. 40(1978)789-791. [79] Y. Li, N. Kawashima, J. Li, A.P. Chandra, A.R. Gerson, A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite, Adv. Colloid Interface Sci. 197-198(2013)1-32. [80] M.J. Nicol, C.R.S. Needes, N.P. Finkelstein, Electrochemical model for the leaching of uranium dioxide-1 Acid media, Leaching Reduct in Hydrometall 2 (1975)1-11. [81] M.J. Nicol, The use of impedance measurements in the electrochemistry of the dissolution of sulfide minerals, Hydrometallurgy 169(2017)99-102. [82] S.A. Bolorunduro, Kinetics of Leaching of Chalcocite in Acid Ferric Sulfate Media:Chemical and Bacterial Leaching, Ph. D. Thesis, University of British Columbia, Canada, 1999. [83] M. Hashemzadeh, D.G. Dixon, W.Y. Liu, Modelling the kinetics of chalcocite leaching in acidified cupric chloride media under fully controlled pH and potential, Hydrometallurgy 189(2019)105114. [84] J.D. Sullivan, Chemical and physical features of copper leaching, Am. Inst. Mining Metall. Eng.-Trans.-Copper Metall. 106(1933)515-546. [85] A. Grizo, N. Pacović, F. Poposka, Ž. Koneska, Leaching of a low-grade chalcocite-covellite ore containing iron in sulphuric acid:The influence of pH and particle size on the kinetics of copper leaching, Hydrometallurgy 8(1) (1982)5-16. [86] R.M. Ruan, E. Zhou, X.Y. Liu, B. Wu, G.Y. Zhou, J.K. Wen, Comparison on the leaching kinetics of chalcocite and pyrite with or without bacteria, Rare Met. 29(6)(2010)552-556. [87] H. Naderi, M. Abdollahy, N. Mostoufi, M.J. Koleini, S.A. Shojaosadati, Z. Manafi, Kinetics of chemical leaching of chalcopyrite from low grade copper ore: behavior of different size fractions, Int. J. Miner. Metall. Mater. 18(6)(2011) 638-645. [88] J.E. Dutrizac, R.J.C. MacDonald, The kinetics of dissolution of covellite in acidified ferric sulphate solutions, Can. Metall. Q. 13(3)(1974)423-433. [89] G. Thomas, T.R. Ingraham, R.J.C. MacDonald, Kinetics of dissolution of synthetic digenite and chalcocite in aqueous acidic ferric sulphate solutions, Can. Metall. Q. 6(3)(1967)281-292. [90] X.P. Niu, R.M. Ruan, Q.Y. Tan, Y. Jia, H.Y. Sun, Study on the second stage of chalcocite leaching in column with redox potential control and its implications, Hydrometallurgy 155(2015)141-152. [91] Z.Y. Lu, M.I. Jeffrey, F. Lawson, An electrochemical study of the effect of chloride ions on the dissolution of chalcopyrite in acidic solutions, Hydrometallurgy 56(2)(2000)145-155. [92] Z.Y. Lu, M.I. Jeffrey, F. Lawson, The effect of chloride ions on the dissolution of chalcopyrite in acidic solutions, Hydrometallurgy 56(2)(2000)189-202. [93] W.W. Fisher, Comparison of chalcocite dissolution in the sulfate, perchlorate, nitrate, chloride, ammonia, and cyanide systems, Miner. Eng. 7(1)(1994)99-103. [94] W.W. Fisher, F.A. Flores, J.A. Henderson, Comparison of chalcocite dissolution in the oxygenated, aqueous sulfate and chloride systems, Miner. Eng. 5(7) (1992)817-834. [95] R.J. Roman, B.R. Benner, Dissolution of copper concentrates, Min. Sci Eng. 5 (1973)3-24. [96] C.Y. Cheng, F. Lawson, The kinetics of leaching chalcocite in acidic oxygenated sulphate-chloride solutions, Hydrometallurgy 27(3)(1991)249-268. [97] C.Y. Cheng, F. Lawson, The kinetics of leaching covellite in acidic oxygenated sulphate-chloride solutions, Hydrometallurgy 27(3)(1991)269-284. [98] T. Hirato, M. Kinoshita, Y. Awakura, H. Majima, The leaching of chalcopyrite with ferric chloride, Metall. Trans. B 17(1)(1986)19-28. [99] A.J. Parker, R.L. Paul, G.P. Power, Electrochemical aspects of leaching copper from chalcopyrite in ferric and cupric salt solutions, Aust. J. Chem. 34(1) (1981)13. [100] M.S. Lee, M.J. Nicol, P. Basson, Cathodic processes in the leaching and electrochemistry of covellite in mixed sulfate-chloride media, J. Appl. Electrochem. 38(3)(2008)363-369. [101] D. Torres, E. Trigueros, P. Robles, W.H. Leiva, R.I. Jeldres, P.G. Toledo, N. Toro, Leaching of pure chalcocite with reject brine and MnO2 from manganese nodules, Metals 10(11)(2020)1426. [102] H. Miki, M. Nicol, L. Velásquez-Yévenes, The kinetics of dissolution of synthetic covellite, chalcocite and digenite in dilute chloride solutions at ambient temperatures, Hydrometallurgy 105(3-4)(2011)321-327. [103] M. Hashemzadeh, W.Y. Liu, The response of sulfr chemical state to different leaching conditions in chloride leaching of chalcocite, Hydrometallurgy 192 (2020)105245. [104] G. Senanayake, A review of chloride assisted copper sulfide leaching by oxygenated sulfuric acid and mechanistic considerations, Hydrometallurgy 98 (1-2)(2009)21-32. [105] E.M. Arce, I. González, A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in sulfuric acid solution, Int. J. Miner. Process. 67(1-4)(2002)17-28. [106] B. Liao, J. Wen, B. Wu, H. Shang, B. Chen, Electrochemistry of oxidation of chalcocite in the presence and absence of microorganisms, Chin. J. Eng. 40 (2018)1495-1501.(in Chinese) [107] A.E. Elsherief, A. Saba, S.E. Afifi, Anodic leaching of chalcocite with periodic cathodic reduction, Miner. Eng. 8(9)(1995)967-978. [108] H. Tributsch, J.A. Rojas-Chapana, Metal sulfide semiconductor electrochemical mechanisms induced by bacterial activity, Electrochim. Acta 45(28)(2000)4705-4716. [109] S. Nagpal, D. Dahlstrom, T. Oolman, A mathematical model for the bacterial oxidation of a sulfide ore concentrate, Biotechnol. Bioeng. 43(1994)357-364. [110] H. Brandl, Microbial Leaching of Metals, in:H.J. Rehm, G. Reed (Eds.), Biotechnology, second ed., WILEY-VCH, New Jersey (2001)191-224. [111] X.Y. Liu, B. Wu, B.W. Chen, J.K. Wen, R.M. Ruan, G.C. Yao, D.Z. Wang, Bioleaching of chalcocite started at different pH:Response of the microbial community to environmental stress and leaching kinetics, Hydrometallurgy 103(1-4)(2010)1-6. [112] H. Liu, X.C. Lu, L.J. Zhang, W.L. Xiang, X.Y. Zhu, J. Li, X.L. Wang, J.J. Lu, R.C. Wang, Collaborative effects of Acidithiobacillus ferrooxidans and ferrous ions on the oxidation of chalcopyrite, Chem. Geol. 493(2018)109-120. [113] P.D. Franzmann, C.M. Haddad, R.B. Hawkes, W.J. Robertson, J.J. Plumb, Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching Bacteria and Archaea:Application of the Ratkowsky equation, Miner. Eng. 18(13-14)(2005)1304-1314. [114] J.J. Plumb, R. Muddle, P.D. Franzmann, Effect of pH on rates of iron and sulfur oxidation by bioleaching organisms, Miner. Eng. 21(1)(2008)76-82. [115] G. Zou, S. Papirio, X.K. Lai, Z.L. Wu, L.C. Zou, J.A. Puhakka, R.M. Ruan, Column leaching of low-grade sulfide ore from Zijinshan copper mine, Int. J. Miner. Process. 139(2015)11-16. [116] H. Sakaguchi, A.E. Torma, M. Silver, Microbiological oxidation of synthetic chalcocite and covellite by Thiobacillus ferrooxidans, Appl. Environ. Microbiol. 31(1)(1976)7-10. [117] H.N. Cheng, Y.H. Hu, Bioleaching of anilite using pure and mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus caldus, Miner. Eng. 20 (12)(2007)1187-1190. [118] H. Cheng, Y. Hu, Bioleaching and Mechanism of Anilite, Covellite and Chalcopyrite, Ph. D. Thesis, Central South University, Changsha, 2010. [119] M.C. Ruiz, S. Honores, R. Padilla, Leaching kinetics of digenite concentrate in oxygenated chloride media at ambient pressure, Metall. Mater. Trans. B 29(5) (1998)961-969. [120] C. Fang, S. Yu, X. Wang, H. Zhao, W. Qin, G. Qiu, J. Wang, Synchrotron radiation XRD investigation of the fine phase transformation during synthetic chalcocite acidic ferric sulfate leaching, Minerals 8(2018)461. [121] W. Mulak, J. Niemiec, Kinetics of Cu2S dissolution in acidic solution of ferric sulphate, Rocz. Chem., 43(1969)1387-1394. [122] J. Petersen, D.G. Dixon, Principles, mechanisms and dynamics of chalcocite heap bioleaching, Hydrometallurgy 1(2003)351-364. [123] P.J. Marcantonio, Chalcocite dissolution in acidic ferric-sulfate solutions, The University of Utah, the United States, 1976. [124] J. Lee, S. Kim, B. Kim, J.C. Lee, Effect of mechanical activation on the kinetics of copper leaching from copper sulfide (CuS), Metals 8(3)(2018)150. [125] A. Aracena, C. Espinoza, O. Jerez, D. Carvajal, A. Jaques, Dissolution kinetics of secondary covellite resulted from digenite dissolution in ferric/acid/chloride media, Physicochem. Probl. Miner. Process. 55(2019)840-851. [126] T. Vargas, C.S. Davis-Belmar, C. Cárcamo, Biological and chemical control in copper bioleaching processes:When inoculation would be of any benefit?, Hydrometallurgy 150(2014)290-298 [127] S.C. Yu, B.J. Yang, C.J. Fang, Y.S. Zhang, S.T. Liu, Y.S. Zhang, L. Shen, J.P. Xie, J. Wang, Dissolution mechanism of the oxidation process of covellite by ferric and ferrous ions, Hydrometallurgy 201(2021)105585. [128] E.M. Córdoba, J.A. Muñoz, M.L. Blázquez, F. González, A. Ballester, Leaching of chalcopyrite with ferric ion Part II:Effect of redox potential, Hydrometallurgy 93(3-4)(2008)88-96. [129] J. Petersen, D.G. Dixon, Principles, Mechanisms and Dynamics of Chalcocite Heap Bioleaching, in:E.R. Donati, W. Sand (Eds.), Microbial Processing of Metal Sulfides, Springer, Dordrecht, 2007, pp. 193-218. [130] M.J. Leahy, M.R. Davidson, M.P. Schwarz, A model for heap bioleaching of chalcocite with heat balance:Mesophiles and moderate thermophiles, Hydrometallurgy 85(1)(2007)24-41. [131] N. Ogbonna, J. Petersen, H.J. Laurie, Metallurgy, An agglomerate scale model for the heap bioleaching of chalcocite,, J. Sounth Africa Inst. Mining Metall. 106 (2006)433-442. [132] H. Li, D. Cang, G. Qiu, A. Wu, Kinetics of secondary copper sulfide heap bioleaching concerning potential and heap constitution, J. Cent. South Univ. 37 (6)(2006)1087-1093(in Chinese). [133] T.T. Zhu, X.C. Lu, H. Liu, J. Li, X.Y. Zhu, J.J. Lu, R.C. Wang, Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans, Geochim. Cosmochim. Acta 127 (2014)120-139. [134] S. Deng, G.H. Gu, B.K. Xu, L.J. Li, B.C. Wu, Surface characterization of arsenopyrite during chemical and biological oxidation, Sci. Total Environ. 626 (2018)349-356. [135] Y.L. Ma, H.C. Liu, J.L. Xia, Z.Y. Nie, H.R. Zhu, Y.D. Zhao, C.Y. Ma, L. Zheng, C.H. Hong, W. Wen, Relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleaching by mixed thermophilic Archaea culture at 65℃, Trans. Nonferrous Met. Soc. China 27 (6)(2017)1374-1384. [136] Y. Yang, W.H. Liu, M. Chen, XANES and XRD study of the effect of ferrous and ferric ions on chalcopyrite bioleaching at 30℃ and 48℃, Miner. Eng. 70 (2015)99-108. [137] M. Kartal, F. Xia, D. Ralph, W.D.A. Rickard, F. Renard, W. Li, Enhancing chalcopyrite leaching by tetrachloroethylene-assisted removal of sulphur passivation and the mechanism of jarosite formation, Hydrometallurgy 191 (2020)105192. [138] W. Zhu, J.L. Xia, Y. Yang, Z.Y. Nie, L. Zheng, C.Y. Ma, R.Y. Zhang, A. Peng, L. Tang, G.Z. Qiu, Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite, Bioresour. Technol. 102 (4)(2011)3877-3882. [139] M. Khoshkhoo, M. Dopson, A. Shchukarev, Å. Sandström, Chalcopyrite leaching and bioleaching:an X-ray photoelectron spectroscopic (XPS) investigation on the nature of hindered dissolution, Hydrometallurgy 149 (2014)220-227. [140] Y.J. Tang, Y.Y. Xie, G.N. Lu, H. Ye, Z. Dang, Z.N. Wen, X.Q. Tao, C.S. Xie, X.Y. Yi, Arsenic behavior during Gallic acid-induced redox transformation of jarosite under acidic conditions, Chemosphere 255(2020)126938. [141] J.F. Banfield, S.A. Welch, H. Zhang, T.T. Ebert, R.L. Penn, Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products, Science 289(5480)(2000)751-754. [142] C.B. Tabelin, R.D. Corpuz, T. Igarashi, M. Villacorte-Tabelin, R.D. Alorro, K. Yoo, S. Raval, M. Ito, N. Hiroyoshi, Acid mine drainage formation and arsenic mobility under strongly acidic conditions:Importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite, J. Hazard. Mater. 399(2020)122844. [143] L. Cao, B. Chen, X. Gou, Q. Zhou, A comparative study on microtopography of jarosite formed in different conditions, Geol. J. China Univ. 25(2019)333-340 (in Chinese). [144] S.S. Feng, Y.J. Yin, Z.W. Yin, H.L. Zhang, D.Q. Zhu, Y.J. Tong, H.L. Yang, Simultaneously enhance iron/sulfur metabolism in column bioleaching of chalcocite by pyrite and sulfur oxidizers based on joint utilization of waste resource, Environ. Res. 194(2021)110702. [145] G.J. Qian, R. Fan, J.Y. Huang, A. Pring, S.L. Harmer, H. Zhang, M.A.D. Rea, J. Brugger, P.R. Teasdale, C.T. Gibson, R.C. Schumann, R.S.C. Smart, A.R. Gerson, Oxidative dissolution of sulfide minerals in single and mixed sulfide systems under simulated acid and metalliferous drainage conditions, Environ. Sci. Technol. 55(4)(2021)2369-2380. [146] G.H. Gu, X.J. Sun, K.T. Hu, J.H. Li, G.Z. Qiu, Electrochemical oxidation behavior of pyrite bioleaching by Acidthiobacillus ferrooxidans, Trans. Nonferrous Met. Soc. China 22(5)(2012)1250-1254. [147] T. Cabral, I. Ignatiadis, Mechanistic study of the pyrite-solution interface during the oxidative bacterial dissolution of pyrite (FeS2) by using electrochemical techniques, Int. J. Miner. Process. 62(1-4)(2001)41-64. [148] Y.S. Zhang, H.B. Zhao, L. Qian, M.L. Sun, X. Lv, L.Y. Zhang, J. Petersen, G.Z. Qiu, A brief overview on the dissolution mechanisms of sulfide minerals in acidic sulfate environments at low temperatures:emphasis on electrochemical cyclic voltammetry analysis, Miner. Eng. 158(2020)106586. [149] P.R. Holmes, F.K. Crundwell, The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen:an electrochemical study, Geochim. Cosmochim. Acta 64(2)(2000)263-274. |
[1] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant[J]. 中国化学工程学报, 2023, 60(8): 228-234. |
[2] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling[J]. 中国化学工程学报, 2023, 59(7): 105-117. |
[3] | Junyang Liu, Luming Wang, Yuhang Bian, Chunshan Li, Zengxi Li, Jie Li. Liquid-phase esterification of methacrylic acid with methanol catalyzed by cation-exchange resin in a fixed bed reactor: Experimental and kinetic studies[J]. 中国化学工程学报, 2023, 58(6): 1-10. |
[4] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood[J]. 中国化学工程学报, 2023, 58(6): 53-68. |
[5] | Bing Liu, Yingjiao Li, Moses Arowo, Guangwen Chu, Yong Luo, Liangliang Zhang, Haikui Zou, Baochang Sun. Sulfonation of 1, 4-diaminoanthraquinone leuco by chlorosulfonic acid: Kinetics and process intensification[J]. 中国化学工程学报, 2023, 58(6): 163-169. |
[6] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels[J]. 中国化学工程学报, 2023, 58(6): 266-281. |
[7] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization[J]. 中国化学工程学报, 2023, 57(5): 10-16. |
[8] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures[J]. 中国化学工程学报, 2023, 56(4): 25-32. |
[9] | Zhiwei Wang, Yu Zhang, Zhi Zhang, Daowei Zhou, Zhikai Cao, Yong Sha. Investigation on catalytic distillation for ethyl acetate production with different catalytic packing structures[J]. 中国化学工程学报, 2023, 53(1): 63-72. |
[10] | Tengjie Wang, Wenkai Li, Xuehui Ge, Ting Qiu, Xiaoda Wang. Kinetics measurement of ethylene-carbonate synthesis via a fast transesterification by microreactors[J]. 中国化学工程学报, 2023, 53(1): 243-250. |
[11] | Yingjie Song, Shuqi Zhong, Yingjiao Li, Kun Dong, Yong Luo, Guangwen Chu, Haikui Zou, Baochang Sun. Study on the catalytic degradation of sodium lignosulfonate to aromatic aldehydes over nano-CuO: Process optimization and reaction kinetics[J]. 中国化学工程学报, 2023, 53(1): 300-309. |
[12] | Xuan Gao, Zhihui Li, Dongsheng Zhang, Xinqiang Zhao, Yanji Wang. Synthesis and kinetics of 2,5-dicyanofuran in the presence of hydroxylamine ionic liquid salts[J]. 中国化学工程学报, 2023, 53(1): 310-316. |
[13] | Kechang Gao, Shengjuan Shao, Zhixing Li, Jiaxin Jing, Weizhou Jiao, Youzhi Liu. Kinetics of the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation[J]. 中国化学工程学报, 2023, 53(1): 317-323. |
[14] | Hongbo Song, Wei Wang, Jiachen Sun, Xianhui Wang, Xianhua Zhang, Sai Chen, Chunlei Pei, Zhi-Jian Zhao. Chemical looping oxidative propane dehydrogenation controlled by oxygen bulk diffusion over FeVO4 oxygen carrier pellets[J]. 中国化学工程学报, 2023, 53(1): 409-420. |
[15] | Kai Zhang, Fangming Xue, Zhiqiang Wang, Xingxing Cheng. Research on prediction model of formation temperature of ammonium bisulfate in air preheater of coal-fired power plant[J]. 中国化学工程学报, 2022, 48(8): 202-210. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 588
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 256
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||