[1] J.E. Holladay, J.J. Bozell, J.F. White, Top value-added chemicals from biomass, Biomass Fuels 2(2007263-275.[2] Y. Romn-Leshkov, J.N. Chheda, J.A. Dumesic, Phase modifiers promote efficient production of hydroxymethylfurfural from fructose, Science 312(2006) 1933-1937.[3] R.J.V. Putten, J.C.V.D. Waal, E.D. Jong, Hydroxymethylfurfural, a versatile platform chemical made from renewable resources, Chem. Rev. 113(2013) 1499-1597.[4] B.M.F. Kuster, 5-Hydroxymethylfurfural (HMF), a review focusing on its manufacture, Starch 42(1990) 314-321.[5] Y. Li, X. Lu, L. Yuan, X. Liu, Fructose decomposition kinetics in organic acids-enrich high temperature liquid water, Biomass Bioenergy 33(2009) 1182-1187.[6] H. Vogel, Dehydration of fructose to 5-hydroxymethylfurfural in sub-and supercritical acetone, Green Chem. 5(2003280-284.[7] H. Yan, Y. Yang, D. Tong, X. Xiang, C. Hu, Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO42-/ZrO2 and SO42-/ZrO2-Al2O3 solid acid catalysts, Catal. Commun. 10(2009) 1558-1563.[8] F. Wang, A.W. Shi, X.X. Qin, C.L. Liu, W.S. Dong, Dehydration of fructose to 5-hydroxymethylfurfural by rare earth metal trifluoromethanesulfonates in organic solvents, Carbohydr. Res. 346(2011) 982-985.[9] B.R. Caes, R.T. Raines, Conversion of fructose into 5-(hydroxymethyl)furfural in sulfolane, ChemSusChem 4(2011) 353-356.[10] M. Ohara, A. Takagaki, S. Nishimura, K. Ebitani, Syntheses of 5-hydroxymethylfurfural and laevoglucosan by selective dehydration of glucose using solid acid and base catalysts, Appl. Catal. A Gen. 383(2010) 149-155.[11] Y. Román-Leshkov, J.N. Chheda, J.A. Dumesic, Phase modifiers promote efficient production of hydroxymethylfurfural from fructose, Science 312(2006) 1933-1937.[12] X. Qi, M. Watanabe, T.M. Aida, R.L.S. Jr, Catalytic conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating, Catal. Commun. 9(20082244-2249.[13] S. Kei-Ichi, I. Yoshihisa, I. Hitoshi, Catalytic activity of lanthanoidions for the dehydration of hexose to 5-Hydroxymethyl-2-furaldehyde in water, Bull. Chem. Soc. Jpn. 74(2001) 1145-1150.[14] C. Carlini, P. Patrono, A.M.R. Galletti, G. Sbrana, Heterogeneous catalysts based on vanadyl phosphate for fructose dehydration to 5-hydroxymethyl-2-furaldehyde, Appl. Catal. A Gen. 275(2004) 111-118.[15] F. Benvenuti, C. Carlini, P. Patrono, Heterogeneous zirconium and titanium catalysts for the selective synthesis of 5-hydroxymethyl-2-furaldehyde from carbohydrates, Appl. Catal. A Gen. 193(2000) 147-153.[16] M. Watanabe, Y. Aizawa, T. Iida, T.M. Aida, C. Levy, K. Sue, H. Inomata, Glucose reactions with acid and base catalysts in hot compressed water at 473 K, Carbohydr. Res. 340(2005) 1925-1930.[17] X. Qi, M. Watanabe, T.M. Aida, R.L.S. Jr, Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating, Green Chem. 10(2008) 799-805.[18] B.F.M. Kuster, The influence of water concentration on the dehydration of d-fructose, Carbohydr. Res. 54(1977) 177-183.[19] S. Zhao, L. Bai, Fundamental research and applications of droplet-based microreactor, Chem. Ind. Eng. Pro. 34(2015) 593-607.[20] C. Ye, M. Dang, C. Yao, G. Chen, Q. Yuan, Process analysis on CO2 absorption by monoethanolamine solutions in microchannel reactors, Chem. Eng. J. 225(2013) 120-127.[21] M. Sattari-Najafabadi, M.N. Esfahany, Intensification of liquid-liquid mass transfer in a circular microchannel in the presence of sodium dodecyl sulfate, Chem. Eng. Process. Process Intensif. 117(2017) 9-17.[22] P.V. Male, M.H.J.M.D. Croon, R.M. Tiggelaar, A.V.D. Berg, J.C. Schouten, Heat and mass transfer in a square microchannel with asymmetric heating, Int. J. Heat Mass Transf. 47(2004) 87-99.[23] J. Jovanovi?, E.V. Rebrov, T.A. Nijhuis, M.T. Kreutzer, V. Hessel, Liquid-liquid flow in a capillary microreactor:hydrodynamic flow patterns and extraction performance, Ind. Eng. Chem. Res. 51(2012) 1020-1031.[24] G.S. Luo, K. Wang, Y.C. Lv, Progress in heterogeneous reactions at microscale, Chem. Eng. J. 64(2013) 165-172.[25] C. Wiles, P. Watts, Recent advances in micro reaction technology, Chem. Commun. 47(2011) 6512-6535.[26] F.S. Asghari, H. Yoshida, Kinetics of the decomposition of fructose catalyzed by hydrochloric acid in subcritical water:formation of 5-Hydroxymethylfurfural, levulinic, and formic acids, Ind. Eng. Chem. Res. 46(2007) 7703-7710.[27] M.Bicker, D. Kaiser, L. Ott, H. Vogel, Dehydrationofd-fructose tohydroxymethylfurfural in sub-and supercritical fluids, J. Supercrit. Fluids 36(2005) 118-126.[28] Aspen Plus version 8.8, help.[29] T. Shimanouchi, Chemical conversion and liquid-liquid extraction of 5-hydroxymethylfurfural from fructose by slug flow microreactor, AICHE J. 62(20162135-2143.[30] R.S. Assary, P.C. Redfern, J.R. Hammond, J. Greeley, L.A. Curtiss, Computational studies of the thermochemistry for conversion of glucose to levulinic acid, J. Phys. Chem. B 114(2010) 9002-9009.[31] V. Sans, N. Karbass, M.I. Burguete, E. Garcíaverdugo, Residence time distribution, a simple tool to understand the behaviour of polymeric mini-flow reactors, RSC Adv. 2(2012) 8721-8728.[32] I.M. Mándity, S.B. Ötvös, F. Fülöp, Strategic application of residence-time control in continuous-flow reactors, ChemistryOpen 4(2015212-223.[33] J.S. Jayakumar, S.M. Mahajani, J.C. Mandal, N. Kannan, P.K. Vijayan, CFD analysis of single-phase flows inside helically coiled tubes, Comput. Chem. Eng.34(2010) 430-446.[34] A. Correia, Numerical investigation of laminar flow in symmetric and asymmetric complex T-channels for micro-mixing, Ⅲ Conferência Nacional em Mecânica de Fluidos, Termodinâmica e Energia (MEFTE-BRAGANÇA 09), 2009.[35] V.V. Dharaiya, A numerical study on the effects of 2d structured sinusoidal elements on fluid flow and heat transfer at microscale, Int. J. Heat Mass Transf. 57(2013) 190-201.[36] X. Chen, T. Li, H. Zeng, Numerical and experimental investigation on micromixers with serpentine microchannels, Int. J. Heat Mass Transf. 98(2016) 131-140.[37] Fluent Inc, Fluent User's Guide, 2014.[38] O. Levenspiel, Chemical Reaction Engineering, John Wiley and Sons, New York, 1999.[39] L. Luo, M. Wei, Y. Fan, G. Flamant, Heuristic shape optimization of baffled fluid distributor for uniform flow distribution, Chem. Eng. Sci. 123(2015) 542-556. |