[1] A.M. Khan, N. Fatima, Biodiesel synthesis via metal oxides and metal chlorides catalysis from marine alga Melanothamnus afaqhusainii, Chin. J. Chem. Eng. 24(3) (2016) 388-393.[2] F.R. Abdeen, M. Mel, M.S. Jami, S.I. Ihsan, A.F. Ismail, A review of chemical absorption of carbon dioxide for biogas upgrading, Chin. J. Chem. Eng. 24(6) (2016) 693-702.[3] F. Sgroi, A.M. Di-Trapani, M. Fodera, R. Testa, S. Tudisca, Economic performance of biogas plants using giant reed silage biomass feedstock, Ecol. Eng. 81(2015) 481-487.[4] C.A.G. And, A.E. Rodrigues, Layered vacuum pressure-swing adsorption for biogas upgrading, Ind. Eng. Chem. Res. 46(23) (2007) 7844-7848.[5] H. Yu, Q. Wang, K.E. Ileleji, C. Yu, Z. Luo, K. Cen, J. Gore, Design and analysis of geographic distribution of biomass power plant and satellite storages in China. Part 1:Straight-line delivery, Biomass Bioenergy 46(2012) 773-784.[6] H. Yu, Q. Wang, K.E. Ileleji, C. Yu, Z. Luo, K. Cen, J. Gore, Design and analysis of geographic distribution of biomass power plant and satellite storages in China. Part 2:Road delivery, Biomass Bioenergy 46(2012) 785-792.[7] J. Singh, B.S. Panesar, S.K. Sharma, A mathematical model for transporting the biomass to biomass based power plant, Biomass Bioenergy 34(4) (2010) 483-488.[8] J. Ariunbaatar, A. Panico, G. Esposito, F. Pirozzi, P.N.L. Lens, Pretreatment methods to enhance anaerobic digestion of organic solid waste, Appl. Energy 123(2014) 143-156.[9] C. Mendes, K. Esquerre, L.M. Queiroz, Application of anaerobic digestion model No. 1 for simulating anaerobic mesophilic sludge digestion, Waste Manag. 35(2015) 89-95.[10] B.Wu,X.Zhang, Y.Xu, D.Bao,S.Zhang,Assessment oftheenergyconsumption of the biogas upgrading process with pressure swing adsorption using novel adsorbents, J. Clean. Prod. 101(2015) 251-261.[11] T. Rehl, J. Mueller, Life cycle assessment of biogas digestate processing technologies, Resour. Conserv. Recycl. 56(1) (2011) 92-104.[12] B. Wu, X. Zhang, D. Bao, Y. Xu, S. Zhang, L. Deng, Biomethane production system:Energetic analysis of various scenarios, Bioresour. Technol. 206(2016) 155-163.[13] B. Wu, X. Zhang, D. Shang, D. Bao, S. Zhang, T. Zheng, Energetic-environmentaleconomic assessment ofthe biogassystem with threeutilization pathways:Combined heat and power, biomethane and fuel cell, Bioresour. Technol. 214(2016) 722-728.[14] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ, IEEE Trans. Evol. Comput. 6(2) (2002) 182-197.[15] V.S.P. Bitra, A.R. Womac, C. Igathinathane, P.I. Miu, Y.T. Yang, D.R. Smith, N. Chevanan, S. Sokhansanj, Direct measures of mechanical energy for knife mill size reduction of switchgrass, wheat straw, and corn stover, Bioresour. Technol. 100(24) (2009) 6578-6585.[16] S. Mani, L.G. Tabil, S. Sokhansanj, Specific energy requirement for compacting corn stover, Bioresour. Technol. 97(12) (2006) 1420-1426.[17] P. Haro, P. Ollero, A.L. Villanueva-Perales, A. Gomez-Barea, Thermochemical biorefinery based on dimethyl ether as intermediate:Technoeconomic assessment, Appl. Energy 102(2013) 950-961.[18] R. Braun, A. Wellinger, In Potential of Co-Digestion, IEA Bioenergy, Task, 37, 2003.[19] O. Guo, Y. Li, J. Bai, G. Yang, Z. Zhou, G. Ren, Y. Feng, Effect of temperature on gasification characteristics of mixture of chicken feces and crop residue, J. Northwest A F Univ. (Nat. Sci. Ed.) 37(6) (2009) 137-144.[20] L.T. Biegler, I.E. Grossmann, A.W. Westerberg, Systematic Methods for Chemical Process Design, 1997.[21] H.P. Loh, J. Lyons, C.W.W. Iii, Process equipment cost estimation, Final Report, Office of Scientific & Technical Information Technical Reports, 2002.[22] X.D. Pu, L.W. Deng, Y. Yong, S. Li, Z.Y. Wang, Economic benefit analysis on large and middle-scale biogas plants with different heating methods, Trans. Chin. Soc. Agric. Eng. 26(7) (2010) 281-284.[23] B.H. Gebreslassie, M. Slivinsky, B. Wang, F. You, Life cycle optimization for sustainable design and operationsofhydrocarbon biorefinery via fast pyrolysis, hydrotreating and hydrocracking, Comput. Chem. Eng. 50(2013) 71-91.[24] J. Krischan, A. Makaruk, M. Harasek, Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogen sulfide from biogas, J. Hazard. Mater. 215(2012) 49-56.[25] E. Ryckebosch, M. Drouillon, H. Veruaeren, Techniques for transformation of biogas to biomethane, Bioresour. Technol. 35(5) (2011) 1633-1645.[26] Y. Xu, Y. Huang, B. Wu, X. Zhang, S. Zhang, Biogas upgrading technologies:Energetic analysis and environmental impact assessment, Chin. J. Chem. Eng. 23(1) (2015) 247-254.[27] X. Liu, Y. Huang, Y. Zhao, R. Gani, X. Zhang, S. Zhang, Ionic liquid design and process simulation for decarbonization of shale gas, Ind. Eng. Chem. Res. 55(20) (2016) 5931-5944.[28] C.A. Grande, A.E. Rodrigues, Biogas to fuel by vacuum pressure swing adsorption-I. Behavior of equilibrium and kinetic-based adsorbents, Ind. Eng. Chem. Res. 46(13) (2007) 4595-4605.[29] H. Ruan, Z. Yang, J. Lin, J. Shen, J. Ji, C. Gao, B. Van der Bruggen, Biogas slurry concentration hybrid membrane process:Pilot-testing and RO membrane cleaning, Desalination 368(2015) 171-180.[30] H. Yu, Q. Wang, K.E. Ileleji, C. Yu, Z. Luo, K. Cen, J. Gore, Design and analysis of geographic distribution of biomass power plant and satellite storages in China. Part 2:Road delivery, Biomass Bioenergy 46(2012) 785-792.[31] A. Hussain, M.-B. Hagg, A feasibility study of CO2 capture from flue gas by a facilitated transport membrane, J. Membr. Sci. 359(1) (2010) 140-148.[32] D. De Clercq, Z. Wen, F. Fei, Economic performance evaluation of bio-waste treatment technology at the facility level, Resour. Conserv. Recycl. 116(2017) 178-184.[33] X. Zhang, C. Li, C. Fu, S.Zhang, Environmental impact assessment of chemical process using the green degree method, Ind. Eng. Chem. Res. 47(4) (2008) 1085-1094. |