[1] M. Mulas, S. Tronci, F. Corona, H. Haimi, P. Lindell, M. Heinonen, R. Vahala, R. Baratti, Predictive control of an activated sludge process:An application to the Viikinmäki wastewater treatment plant, J. Process Control 35(2015) 89-100.[2] J.Q. Wan, M.Z. Huang, Y.G. Ma, W.J. Guo, Y. Wang, H.P. Zhang, W.J. Li, X.F. Sun, Prediction of effluent quality of a paper mill wastewater treatment using an adaptive network-based fuzzy inference system, Appl. Soft Comput. 11(3) (2011) 3238-3246.[3] Y.Q. Liu, J.D. Chen, Z.H. Sun, Y. Li, D.P. Huang, A probabilistic self-validating softsensor with application to wastewater treatment, Comput. Chem. Eng. 71(2014) 263-280.[4] C. Shang, F. Yang, D.X. Huang, W.X. Lyu, Data-driven soft sensor development based on deep learning technique, J. Process Control 24(3) (2014) 223-233.[5] J.Z. Liu, B. Danneels, P. Vanormelingen, W. Vyverman, Nutrient removal from horticultural wastewater by benthic filamentous algae Klebsormidium sp., Stigeoclonium spp. and their communities:From laboratory flask to outdoor Algal Turf Scrubber (ATS), Water Res. 92(2016) 61-68.[6] P. Roy, G.S. Mahapatra, P. Rani, S.K. Pandey, K.N. Dey, Robust feedforward and recurrent neural network based dynamic weighted combination models for software reliability prediction, Appl. Soft Comput. 22(2014) 629-637.[7] J.L. Liu, Developing a soft sensor with online variable reselection for unobserved multi-mode operation, J. Process Control 42(2016) 90-103.[8] J.G. Wang, T. Shen, J.H. Zhao, H. Jing, S.W. Ma, X.F. Wang, Y. Yao, T. Chen, Soft-sensing method for optimizing combustion efficiency of reheating furnaces, J. Taiwan Inst. Chem. Eng. 73(2017) 112-122.[9] X.S. Qin, F.R. Gao, G.H. Chen, Wastewater quality monitoring system using sensor fusion and machine learning techniques, Water Res. 46(4) (2012) 1133-1144.[10] F.G. Gentili, J. Fick, Algal cultivation in urban wastewater:An efficient way to reduce pharmaceutical pollutants, J. Appl. Phycol. 29(1) (2017) 255-262.[11] Y. Zhu, D.X. Yuan, Y.M. Huang, J. Ma, S.C. Feng, K.N. Lin, A modified method for on-line determination of trace ammonium in seawater with a long-path liquid waveguide capillary cell and spectrophotometric detection, Mar. Chem. 162(2) (2014) 114-121.[12] S. Xue, K. Uchiyama, H. Li, Determination of ammonium on an integrated microchip with LED-induced fluorescence detection, J. Environ. Sci. 24(3) (2012) 564-570.[13] J.M. Estela, V. Cerdà, Flow analysis techniques for phosphorus:An overview, Talanta 66(2) (2005) 307-331.[14] Y. Zhu, D. Yuan, Y. Huang, J. Ma, S.C. Feng, A sensitive flow-batch system for on board determination of ultra-trace ammonium in seawater:Method development and shipboard application, Anal. Chim. Acta 794(2013) 47-54.[15] G.H. Chen, M. Zhang, Z. Zhang, Y.M. Huang, D.X. Yuan, On-line solid phase extraction and spectrophotometric detection with flow technique for the determination of nanomolar level ammonium in seawater samples, Anal. Lett. 44(1-3) (2011) 310-326.[16] C. Pons, I.V. Tóth, A.O.S.S. Rangel, R. Forteza, V. Cerdà, Multi-pumping flow system for the determination of dissolved orthophosphate and dissolved organic phosphorus in wastewater samples, Anal. Chim. Acta 572(1) (2006) 148-154.[17] I.N. da Silva, R.A. Flauzino, An approach based on neural networks for estimation and generalization of crossflow filtration processes, Appl. Soft Comput. 8(1) (2008) 590-598.[18] J. Ma, Y. Yuan, T.J. Zhou, D.X. Yuan, Determination of total phosphorus in natural waters with a simple neutral digestion method using sodium persulfate, Limnol. Oceanogr. Methods 15(4) (2017) 372-380.[19] R. Zhang, J. Tao, Data-driven modeling using improved multi-objective optimization based neural network for coke furnace system, IEEE Trans. Ind. Electron. 64(4) (2017) 3147-3155.[20] W. Shao, X. Tian, Semi-supervised selective ensemble learning based on distance to model for nonlinear soft sensor development, Neurocomputing 222(2017) 91-104.[21] J.F. de Canete, P. del Saz-Orozco, R. Baratti, M. Mulas, A. Ruano, A. Garcia-Cerezo, Soft-sensing estimation of plant effluent concentrations in a biological wastewater treatment plant using an optimal neural network, Expert Syst. Appl. 63(2016) 8-19.[22] D. Aguado, J. Ribes, T. Montoya, J. Ferrer, A. Seco, A methodology for sequencing batch reactor identification with artificial neural networks:A case study, Comput. Chem. Eng. 33(2) (2009) 465-472.[23] S.H. Hong, M.W. Lee, D.S. Lee, J.M. Park, Monitoring of sequencing batch reactor for nitrogen and phosphorus removal using neural networks, Biochem. Eng. J. 35(3) (2007) 365-370.[24] M. Bagheri, S.A. Mirbagheri, M. Ehteshami, Z. Bagheri, Modeling of a sequencing batch reactor treating municipal wastewater using multi-layer perceptron and radial basis function artificial neural networks, Process. Saf. Environ. Prot. 93(2015) 111-123.[25] F.A.A. Souza, R. Araujo, J. Mendes, Review of soft sensor methods for regression applications, Chemom. Intell. Lab. Syst. 152(2016) 69-79.[26] M. Abdolrazzaghi, M.H. Zarifi, W. Pedrycz, M. Daneshmand, Robust ultra-high resolution microwave planar sensor using fuzzy neural network approach, IEEE Sensors J. 17(2) (2017) 323-332.[27] H.G. Han, Y. Li, Y.N. Guo, J.F. Qiao, A soft computing method to predict sludge volume index based on a recurrent self-organizing neural network, Appl. Soft Comput. 38(2016) 477-486.[28] D. Cecil, M. Kozlowska, Software sensors are a real alternative to true sensors, Environ. Model. Softw. 25(5) (2010) 622-625.[29] D.J. Dürrenmatt, W. Gujer, Data-driven modeling approaches to support wastewater treatment plant operation, Environ. Model. Softw. 30(2012) 47-56.[30] J. Figueiredo, M.A. Botto, M. Rijo, SCADA system with predictive controller applied to irrigation canals, Control. Eng. Pract. 21(6) (2013) 870-886.[31] H. Haimi, M. Mulas, F. Corona, Data-driven soft-sensors for biological wastewater treatment plants:An overview, Environ. Model. Softw. 47(2013) 88-107.[32] M.H. Kim, Y.S. Kim, A.A. Prabu, C.K. Yoo, A systematic approach to data-driven modeling and soft sensing in a full-scale plant, Water Sci. Technol. 60(2) (2009) 363-370.[33] M.Z. Huang, Y.W. Ma, J.Q. Wan, A sensor-software based on a genetic algorithmbased neural fuzzy system for modeling and simulating a wastewater treatment process, Appl. Soft Comput. 27(2015) 1-10.[34] F.J. Fernandez, A. Seco, J. Ferrer, Use of neurofuzzy networks to improve wastewater flow-rate forecasting, Environ. Model. Softw. 24(2009) 686-693.[35] H.G. Han, L.M. Ge, J.F. Qiao, An adaptive second order fuzzy neural network for nonlinear system modeling, Neurocomputing 214(2016) 837-847.[36] K. Hu, J.Q. Wan, Y.W. Ma, A fuzzy neural network model for monitoring A2/O process using on-line monitoring parameters, J. Environ. Sci. Health A 47(2012) 744-754. |