[1] IPCC, Climate Change 2014:Synthesis Report, 2014.[2] M.E. Boot-Handford, J.C. Abanades, E.J. Anthony, M.J. Blunt, S. Brandani, N. Mac Dowell, et al., Carbon capture and storage update, Energy Environ. Sci. 7(1) (2014) 130-189.[3] S. Vasudevan, S. Farooq, I.A. Karimi, M. Saeys, M.C. Quah, R. Agrawal, Energy penalty estimates for CO2 capture:Comparison between fuel types and capture-combustion modes, Energy 103(2016) 709-714.[4] M. Zhao, A.I. Minett, A.T. Harris, A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2, Energy Environ. Sci. 6(1) (2013) 25-40.[5] F. Li, L.S. Fan, Clean coal conversion processes-Progress and challenges, Energy Environ. Sci. 1(2) (2008) 248-267.[6] B.G. Miller, Clean coal engineering technology, Clean Coal Engineering Technol. (2011) 661-681.[7] H. Jin, M. Ishida, M. Kobayashi, M. Nunokawa, Exergy evaluation of two current advanced power plants:Supercritical steam turbine and combined cycle, J. Energy Res. Technol. 119(4) (1997) 250-256.[8] Y. Cheng, F. Wei, Y. Jin, Q. Li, J. Zhang, Coal Gasification, John Wiley & Sons, Inc., 2017[9] J. Fan, H. Hong, L. Zhu, Q. Jiang, H. Jin, Thermodynamic and environmental evaluation of biomass and coal co-fuelled gasification chemical looping combustion with CO2 capture for combined cooling, heating and power production, Appl. Energy 195(2017) 861-876.[10] J. Fan, L. Zhu, P. Jiang, L. Li, H. Liu, Comparative exergy analysis of chemical looping combustion thermally coupled and conventional steam methane reforming for hydrogen production, J. Clean. Prod. 131(Supplement C) (2016) 247-258.[11] J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, F. Luis, Progress in chemical-looping combustion and reforming technologies, Prog. Energy Combust. Sci. 38(2) (2012) 215-282.[12] J. Strohle, M. Orth, B. Epple, Chemical looping combustion of hard coal in a 1 MWth pilot plant using ilmenite as oxygen carrier, Appl. Energy 157(2015) 288-294.[13] J. Fan, L. Zhu, H. Hong, Q. Jiang, H. Jin, A thermodynamic and environmental performance of in-situ gasification of chemical looping combustion for power generation using ilmenite with different coals and comparison with other coal-driven power technologies for CO2 capture, Energy 119(2016) 1171-1180.[14] Z. Zhou, L. Han, O. Nordness, G.M. Bollas, Continuous regime of chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU) reactivity of CuO oxygen carriers, Appl Catal. B 166(2015) 132-144.[15] T. Mendiara, I. Adanez-Rubio, P. Gayan, A. Abad, L.F. de Diego, F. Garcia-Labiano, et al., Process comparison for biomass combustion:In situ gasification-chemical looping combustion (iG-CLC) versus chemical looping with oxygen uncoupling (CLOU), Energy Technol. 4(10) (2016) 1130-1136.[16] S. Scott, J. Dennis, A. Hayhurst, T. Brown, In situ gasification of a solid fuel and CO2 separation using chemical looping, AICHE J. 52(9) (2006) 3325-3328.[17] A. Cuadrat, A. Abad, F. Garcia-Labiano, P. Gayan, L. De Diego, J. Adanez, Relevance of the coal rank on the performance of the in situ gasification chemical-looping combustion, Chem. Eng. J. 195(2012) 91-102.[18] W. Yang, H. Zhao, J. Ma, D. Mei, C. Zheng, Copper-decorated hematite as an oxygen carrier for in situ gasification chemical looping combustion of coal, Energy Fuel 28(6) (2014) 3970-3981.[19] M. Zheng, L. Shen, X. Feng, In situ gasification chemical looping combustion of a coal using the binary oxygen carrier natural anhydrite ore and natural iron ore, Energy Convers. Manag. 83(2014) 270-283.[20] L. Shen, J. Wu, Z. Gao, J. Xiao, Reactivity deterioration of NiO/Al2O3 oxygen carrier for chemical looping combustion of coal in a 10 kWth reactor, Combust. Flame 156(7) (2009) 1377-1385.[21] J. Ma, H. Zhao, X. Tian, Y. Wei, S. Rajendran, Y. Zhang, et al., Chemical looping combustion of coal in a 5 kWth interconnected fluidized bed reactor using hematite as oxygen carrier, Appl. Energy 157(2015) 304-313.[22] T. Mendiara, R. Perez, A. Abad, L. de Diego, F. Garcia-Labiano, P. Gayan, et al., Lowcost fe-based oxygen carrier materials for the i G-CLC process with coal. 1, Ind. Eng. Chem. Res. 51(50) (2012) 16216-16229.[23] A. Abad, A. Cuadrat, T. Mendiara, F. Garcia-Labiano, P. Gayan, L. de Diego, et al., Lowcost Fe-based oxygen carrier materials for the i G-CLC process with coal. 2, Ind. Eng. Chem. Res. 51(50) (2012) 16230-16241.[24] A. Cuadrat, A. Abad, F. Garcia-Labiano, P. Gayan, L. De Diego, J. Adanez, The use of ilmenite as oxygen-carrier in a 500 Wth chemical-looping coal combustion unit, Int. J. Greenhouse Gas Control 5(6) (2011) 1630-1642.[25] P. Markstrom, C. Linderholm, A. Lyngfelt, Chemical-looping combustion of solid fuels-Design and operation of a 100 kW unit with bituminous coal, Int. J. Greenhouse Gas Control 15(2013) 150-162.[26] T. Brown, J. Dennis, S. Scott, J. Davidson, A. Hayhurst, Gasification and chemicallooping combustion of a lignite char in a fluidized bed of iron oxide, Energy Fuel 24(5) (2010) 3034-3048.[27] T. Mendiara, M. Izquierdo, A. Abad, L. de Diego, F. Garcia-Labiano, P. Gayan, et al., Release of pollutant components in CLC of lignite, Int. J. Greenhouse Gas Control 22(2014) 15-24.[28] J. Fan, L. Zhu, Performance analysis of a feasible technology for power and highpurity hydrogen production driven by methane fuel, Appl. Therm. Eng. 75(2015) 103-114.[29] J. Dennis, S. Scott, A. Hayhurst, In situ gasification of coal using steam with chemical looping:A technique for isolating CO2 from burning a solid fuel, J. Energy Inst. 79(3) (2006) 187-190.[30] H. Watanabe, M. Otaka, Numerical simulation of coal gasification in entrained flow coal gasifier, Fuel 85(12) (2006) 1935-1943.[31] J. Rezaiyan, N.P. Cheremisinoff, Gasification Technologies:A primer for Engineers and Scientists, CRC Press, 2005.[32] L. Zhu, J. Fan, Thermodynamic analysis of H2 production from CaO sorptionenhanced methane steam reforming thermally coupled with chemical looping combustion as a novel technology, Int. J. Energy Res. 39(3) (2015) 356-369.[33] A. Abad, J. Adanez, P. Gayan, L.F. de Diego, F. Garcia-Labiano, G. Sprachmann, Conceptual design of a 100 MWth CLC unit for solid fuel combustion, Appl. Energy 157(2015) 462-474.[34] M.B. Nikoo, N. Mahinpey, Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS, Biomass Bioenergy 32(12) (2008) 1245-1254.[35] M. Puig-Arnavat, J.C. Bruno, A. Coronas, Review and analysis of biomass gasification models, Renew. Sust. Energ. Rev. 14(9) (2010) 2841-2851.[36] A. Rubel, Y. Zhang, J.K. Neathery, K. Liu, Comparative study of the effect of different coal fly ashes on the performance of oxygen carriers for chemical looping combustion, Energy Fuel 26(6) (2012) 3156-3161.[37] M.M. Azis, H. Leion, E. Jerndal, B.M. Steenari, T. Mattisson, A. Lyngfelt, The effect of bituminous and lignite ash on the performance of ilmenite as oxygen carrier in chemical-looping combustion, Chem. Eng. Technol. 36(9) (2013) 1460-1468.[38] A. Rubel, Y. Zhang, K. Liu, J. Neathery, Effect of ash on oxygen carriers for the application of chemical looping combustion to a high carbon char, Oil Gas Sci. Technol. Rev. IFP Energ. Nouv. 66(2) (2011) 291-300.[39] J. Fan, H. Hong, L. Zhu, Z. Wang, H. Jin, Thermodynamic evaluation of chemical looping combustion for combined cooling heating and power production driven by coal, Energy Convers. Manag. 135(2017) 200-211.[40] A. Abad, J. Adanez, A. Cuadrat, F. Garcia-Labiano, P. Gayan, F. Luis, Kinetics of redox reactions of ilmenite for chemical-looping combustion, Chem. Eng. Sci. 66(4) (2011) 689-702.[41] T. Song, L. Shen, J. Xiao, D. Chen, H. Gu, S. Zhang, Nitrogen transfer of fuel-N in chemical looping combustion, Combust. Flame 159(3) (2012) 1286-1295.[42] T. Song, T. Shen, L. Shen, J. Xiao, H. Gu, S. Zhang, Evaluation of hematite oxygen carrier in chemical-looping combustion of coal, Fuel 104(2013) 244-252.[43] A. Lyngfelt, Chemical-looping combustion of solid fuels-Status of development, Appl. Energy 113(2014) 1869-1873.[44] P. Ohlemuller, F. Alobaid, A. Gunnarsson, J. Strohle, B. Epple, Development of a process model for coal chemical looping combustion and validation against 100 kWth tests, Appl. Energy 157(2015) 433-448.[45] F.N. Ridha, M.A. Duchesne, X. Lu, D.Y. Lu, D. Filippou, R.W. Hughes, Characterization of an ilmenite ore for pressurized chemical looping combustion, Appl. Energy 163(2016) 323-333.[46] L. Zhu, P. Jiang, J. Fan, Comparison of carbon capture IGCC with chemical-looping combustion and with calcium-looping process driven by coal for power generation, Chem. Eng. Res. Des. 104(2015) 110-124.[47] M.M. Azis, E. Jerndal, H. Leion, T. Mattisson, A. Lyngfelt, On the evaluation of synthetic and natural ilmenite using syngas as fuel in chemical-looping combustion (CLC), Chem. Eng. Res. Des. 88(11) (2010) 1505-1514.[48] J.M. Lee, Y.J. Kim, W.J. Lee, S.D. Kim, Coal-gasification kinetics derived from pyrolysis in a fluidized-bed reactor, Energy 23(6) (1998) 475-488.[49] A. Abad, P. Gayan, F. Luis, F. Garcia-Labiano, J. Adanez, Fuel reactor modelling in chemical-looping combustion of coal:1. Model formulation, Chem. Eng. Sci. 87(2013) 277-293. |