Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (2): 426-443.DOI: 10.1016/j.cjche.2018.06.033
• Energy, Resources and Environmental Technology • 上一篇 下一篇
Khalid El Sheikh1,2, Mohammad Jakir Hossain Khan2, Mahar Diana Hamid2, Siddhartha Shrestha3, Brahim Si Ali2, G.A. Ryabov4, Lya A. Dolgushin4, Mohd Azlan Hussain2, Tatiana V. Bukharkina1, Elena A. Gorelova4
收稿日期:
2018-01-11
修回日期:
2018-06-10
出版日期:
2019-02-28
发布日期:
2019-03-18
通讯作者:
Khalid El Sheikh, Mohammad Jakir Hossain Khan
基金资助:
Supported by the University of Malaya, Ministry of Education Malaysia under the grant FP064-2015A (FRGS) and IPPP grant number: PG101-2015B
Khalid El Sheikh1,2, Mohammad Jakir Hossain Khan2, Mahar Diana Hamid2, Siddhartha Shrestha3, Brahim Si Ali2, G.A. Ryabov4, Lya A. Dolgushin4, Mohd Azlan Hussain2, Tatiana V. Bukharkina1, Elena A. Gorelova4
Received:
2018-01-11
Revised:
2018-06-10
Online:
2019-02-28
Published:
2019-03-18
Contact:
Khalid El Sheikh, Mohammad Jakir Hossain Khan
Supported by:
Supported by the University of Malaya, Ministry of Education Malaysia under the grant FP064-2015A (FRGS) and IPPP grant number: PG101-2015B
摘要: Fossil fuel combustion is one of the major means to meet the mounting global energy demand. However, the increasing NOx and N2O emissions arising from fossil fuel combustion process have hazardous effects. Thus, mitigating these gases is vital to attain a sustainable environment. Interestingly, oxy-fuel combustion in fluidized bed for carbon capture and minimized NOx emissions is strongly sustainable compare to the other approaches. It was assessed that NOx formation and fuel-N conversion have significant limitation under oxy-fluidized bed compared to air mode and the mechanism of NOx formation is still deficient and requires further development. In addition, this review paper discussed the potential of primary measure as low emission process with others supplementary techniques for feasible NOx reduction. The influences of combustion mode, operating parameters, and reduction techniques such as flue gas recirculation, oxygen staging, biomass co-firing, catalyst, influence of fluidized bed design and structure, decoupling combustion and their merges are respectively evaluated. Findings show that significant minimization of NOx emission can be achieved through combination of primary and secondary reduction techniques.
Khalid El Sheikh, Mohammad Jakir Hossain Khan, Mahar Diana Hamid, Siddhartha Shrestha, Brahim Si Ali, G.A. Ryabov, Lya A. Dolgushin, Mohd Azlan Hussain, Tatiana V. Bukharkina, Elena A. Gorelova. Advances in reduction of NOx and N2O1 emission formation in an oxyfired fluidized bed boiler[J]. Chinese Journal of Chemical Engineering, 2019, 27(2): 426-443.
Khalid El Sheikh, Mohammad Jakir Hossain Khan, Mahar Diana Hamid, Siddhartha Shrestha, Brahim Si Ali, G.A. Ryabov, Lya A. Dolgushin, Mohd Azlan Hussain, Tatiana V. Bukharkina, Elena A. Gorelova. Advances in reduction of NOx and N2O1 emission formation in an oxyfired fluidized bed boiler[J]. Chin.J.Chem.Eng., 2019, 27(2): 426-443.
[1] EPA United state Environmental Protection Agency, EPA 4561F99-006R. 1999[2] B.H. Minhua Zhang, Haoxi Jiang, Yifei Chen, Research progress in the SO2 resistance of the catalysts for selective catalytic reduction of NOx, Chin. J. Chem. Eng. 2(2017) 40-45.[3] D. Nuvolone, D. Petri, F. Voller, The effects of ozone on human health, Environ. Sci. Pollut. Res. (2017) 1-15.[4] T. Ming, S. Shen, S. Caillol, Fighting global warming by greenhouse gas removal:Destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies, Environ. Sci. Pollut. Res. 23(2016) 6119-6138.[5] A. Shakoor, M. Abdullah, B. Yousaf, Y. Ma, Atmospheric emission of nitric oxide and processes involved in its biogeochemical transformation in terrestrial environment, Environ. Sci. Pollut. Res. (2016) 1-20.[6] B.H. Minhua Zhang, Haoxi Jiang, Yifei Chen, Research progress in the SO2 resistance of the catalysts for selective catalytic reduction of NOx, Chin. J. Chem. Eng. 20(2017) 4216-4224.[7] http://www.extraordinaryroadtrip.org/research-library/air-pollution/understandingair-pollution/nitrogen-dioxide.[8] S. Hill, L. Douglas Smoot, Modeling of nitrogen oxides formation and destruction in combustion systems, Prog. Energy Combust. Sci. 26(2000) 417-458.[9] A. Bueno-Lopez, A. Garcia-Garcia, A. Linares-Solano, NOxreduction by potassiumcontaining coal pellets. Discussing lifetime test profiles, Fuel Process. Technol. 77(2002) 301-307.[10] L. Dong, S. Gao, G. Xu, NO reduction over biomass char in the combustion process, Energy Fuel 24(2009) 446-450.[11] H. Bosh, F. Janssen, Formation and control of nitrogen oxides, Catal. Today 2(1988) 369-379.[12] M.I. Qureshi, A.M. Rasli, U. Awan, J. Ma, G. Ali, A. Alam, F. Sajjad, K. Zaman, Environment and air pollution:Health services bequeath to grotesque menace, Environ. Sci. Pollut. Res. 22(2015) 3467-3476.[13] L. Sloss, Trends in emission standards, IEA Clean Coal Centre Reports 2003, p. 64.[14] P. Yadav, S.R. Samadder, Environmental impact assessment of municipal solid waste management options using life cycle assessment:A case study, Environ. Sci. Pollut. Res. (2017) 1-17.[15] A.A. Bhuiyan, J. Naser, Computational modelling of co-firing of biomass with coal under oxy-fuel condition in a small scale furnace, Fuel 143(2015) 455-466.[16] A. Gomez-Barea, B. Leckner, Modeling of biomass gasification in fluidized bed, Prog. Energy Combust. Sci. 36(2010) 444-509.[17] S. Rapagna, N. Jand, A. Kiennemann, P.U. Foscolo, Steam-gasification of biomass in a fluidised-bed of olivine particles, Biomass Bioenergy 19(2000) 187-197.[18] P. Basu, S.A. Fraser, Circulating Fluidized Bed Boilers:Design and Operations, Butterworth-Heinemann, 1991.[19] J. Grace, A. Avidan, T. Knowlton, Circulating Fluidized Beds, Blackie Academic & Professional, New York, 1997.[20] C. Lupianez, L.I. Diez, L.M. Romeo, NO emissions from anthracite oxy-firing in a fluidized-bed combustor:Effect of the temperature, limestone, and O2, Energy Fuel 27(2013) 7619-7627.[21] M. Jablonska, A.E.P. Gimeno, A. Wegrzyn, L. Chmielarz, A Short Review about NOx Storage/Reduction Catalysts Based on Metal Oxides and Hydrotalcite-Type Anionic Clays, 2014.[22] L.D. Smoot, Fundamentals of coal combustion for clean and efficient use, Coal Sci. Technol. 20(1993) 191.[23] S. Mahmoudi, J. Baeyens, J.P. Seville, NOxformation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass, Biomass Bioenergy 34(2010) 1393-1409.[24] J. Koornneef, M. Junginger, A. Faaij, Development of fluidized bed combustion-An overview of trends, performance and cost, Prog. Energy Combust. Sci. 33(2007) 19-55.[25] L. Duan, C. Zhao, W. Zhou, C. Qu, X. Chen, Effects of operation parameters on NO emission in an oxy-fired CFB combustor, Fuel Process. Technol. 92(2011) 379-384.[26] R.W. Hughes, D.Y. Lu, E.J. Anthony, A. Macchi, Design, process simulation and construction of an atmospheric dual fluidized bed combustion system for in situ CO 2 capture using high-temperature sorbents, Fuel Process. Technol. 86(2005) 1523-1531.[27] F. Normann, K. Andersson, B. Leckner, F. Johnsson, Emission control of nitrogen oxides in the oxy-fuel process, Prog. Energy Combust. Sci. 35(2009) 385-397.[28] B. Buhre, L. Elliott, C. Sheng, R. Gupta, T. Wall, Oxy-fuel combustion technology for coal-fired power generation, Prog. Energy Combust. Sci. 31(2005) 283-307.[29] L. Chen, S.Z. Yong, A.F. Ghoniem, Oxy-fuel combustion of pulverized coal:Characterization, fundamentals, stabilization and CFD modeling, Prog. Energy Combust. Sci. 38(2012) 156-214.[30] M.B. Toftegaard, J. Brix, P.A. Jensen, P. Glarborg, A.D. Jensen, Oxy-fuel combustion of solid fuels, Prog. Energy Combust. Sci. 36(2010) 581-625.[31] G. Scheffknecht, L. Al-Makhadmeh, U. Schnell, J. Maier, Oxy-fuel coal combustion-A review of the current state-of-the-art, Int. J. Greenhouse Gas Control 5(2011) S16-S35.[32] H.B. Hariz, M.S. Takriff, Palm oil mill effluent treatment and CO2 sequestration by using microalgae-Sustainable strategies for environmental protection, Environ. Sci. Pollut. Res. (2017) 1-32.[33] N. Kimura, K. Omata, T. Kiga, S. Takano, S. Shikisima, The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery, Energy Convers. Manag. 36(1995) 805-808.[34] E. Croiset, K. Thambimuthu, NOx and SO2 emissions from O2/CO2 recycle coal combustion, Fuel 80(2001) 2117-2121.[35] T. Czakiert, K. Sztekler, S. Karski, D. Markiewicz, W. Nowak, Oxy-fuel circulating fluidized bed combustion in a small pilot-scale test rig, Fuel Process. Technol. 91(2010) 1617-1623.[36] P. Basu, Circulating Fluidized Bed Boilers:Design, Operation and Maintenance, Springer, 2015.[37] D. Kunii, O. Levenspiel, Fluidization Engineering, Elsevier, 2013.[38] P. Basu, Combustion of coal in circulating fluidized-bed boilers:A review, Chem. Eng. Sci. 54(1999) 5547-5557.[39] E.S. Rubin, H. Mantripragada, A. Marks, P. Versteeg, J. Kitchin, The outlook for improved carbon capture technology, Prog. Energy Combust. Sci. 38(2012) 630-671.[40] E. Anthony, H. Hack, Oxy-Fired Fluidized Bed Combustion:Technology, Prospects and New Developments, Fluidized Bed Technologies for near-Zero Emission Combustion and Gasification, 2013867-894.[41] M. de las Obras-Loscertales, A. Rufas, L.F. de Diego, F. Garcia-Labiano, P. Gayan, A. Abad, J. Adanez, Effects of temperature and flue gas recycle on the SO2 and NOx emissions in an oxy-fuel fluidized bed combustor, Energy Procedia 37(2013) 1275-1282.[42] M.C. Stewart, R.T. Symonds, V. Manovic, A. Macchi, E.J. Anthony, Effects of steam on the sulfation of limestone and NO x formation in an air-and oxy-fired pilot-scale circulating fluidized bed combustor, Fuel 92(2012) 107-115.[43] C. Lupianez, I. Guedea, I. Bolea, L.I. Diez, L.M. Romeo, Experimental study of SO2 and NOxemissions in fluidized bed oxy-fuel combustion, Fuel Process. Technol. 106(2013) 587-594.[44] P. Ahmed, M.A. Habib, R. Ben-Mansour, P. Kirchen, A.F. Ghoniem, CFD (computational fluid dynamics) analysis of a novel reactor design using ion transport membranes for oxy-fuel combustion, Energy 77(2014) 932-944.[45] Y.J. Cho, S.J. Kim, S.H. Nam, Y. Kang, S.D. Kim, Heat transfer and bubble properties in three-phase circulating fluidized beds, Chem. Eng. Sci. 56(2001) 6107-6115.[46] C. Lupianez, L.I. Diez, L.M Romeo, NO Emissions from Anthracite Oxy-Firing in a Fluidized-Bed Combustor:Effect of the Temperature, Limestone, and O2, Energy & Fuels 27(2013) 7619-7627.[47] L. Aemand, B. Leckner, Formation of nitrogen oxide (N2O) in a circulating fluidizedbed combustor, Energy Fuel 7(1993) 1097-1107.[48] P. Glarborg, A. Jensen, J.E. Johnsson, Fuel nitrogen conversion in solid fuel fired systems, Prog. Energy Combust. Sci. 29(2003) 89-113.[49] S.V. Vassilev, C.G. Vassileva, A new approach for the combined chemical and mineral classification of the inorganic matter in coal. 1. Chemical and mineral classification systems, Fuel 88(2009) 235-245.[50] R. Yoshiie, N. Hikosaka, Y. Nunome, Y. Ueki, I. Naruse, Effects of flue gas recirculation and nitrogen contents in coal on NO X emissions under oxy-fuel coal combustion, Fuel Process. Technol. 136(2015) 106-111.[51] C. Lupianez, L.I. Diez, L.M. Romeo, Influence of gas-staging on pollutant emissions from fluidized bed oxy-firing, Chem. Eng. J. 256(2014) 380-389.[52] J. Konttinen, S. Kallio, M. Hupa, F. Winter, NO formation tendency characterization for solid fuels in fluidized beds, Fuel 108(2013) 238-246.[53] M. Valk, Atmospheric Fluidized Bed Coal Combustion:Research, Development and Application, Elsevier, 2013.[54] A. Hayhurst, A. Lawrence, The amounts of NOx and N2O formed in a fluidized bed combustor during the burning of coal volatiles and also of char, Combust. Flame 105(1996) 341-357.[55] F. Winter, C. Wartha, G. Loffler, H. Hofbauer, The NO and N2O Formation Mechanism during Devolatilization and Char Combustion under Fluidized-Bed Conditions, Symposium (International) on Combustion, Elsevier, 19963325-3334.[56] F. Kazanc, R. Khatami, P. Manoel Crnkovic, Y.A. Levendis, Emissions of NOx and SO2 from coals of various ranks, bagasse, and coal-bagasse blends burning in O2/N2 and O2/CO2 environments, Energy Fuel 25(2011) 2850-2861.[57] J.A. Lasek, M. Janusz, J. Zuwala, K. Glod, A. Iluk, Oxy-fuel combustion of selected solid fuels under atmospheric and elevated pressures, Energy 62(2013) 105-112.[58] A. Harding, S. Brown, K. Thomas, Release of NO from the combustion of coal chars, Combust. Flame 107(1996) 336-350.[59] S. Visona, B. Stanmore, Modeling NOx release from a single coal particle I. Formation of NO from volatile nitrogen, Combust. Flame 105(1996) 92-103.[60] K.M. Thomas, The release of nitrogen oxides during char combustion, Fuel 76(1997) 457-473.[61] A. Tourunen, J. Saastamoinen, H. Nevalainen, Experimental trends of NO in circulating fluidized bed combustion, Fuel 88(2009) 1333-1341.[62] X. Yan, D. Che, T. Xu, Effect of rank, temperatures and inherent minerals on nitrogen emissions during coal pyrolysis in a fixed bed reactor, Fuel Process. Technol. 86(2005) 739-756.[63] A. Arenillas, F. Rubiera, J.B. Parra, J.J. Pis, Influence of char structure on reactivity and nitric oxide emissions, Fuel Process. Technol. 77(2002) 103-109.[64] L. Dong, S. Gao, W. Song, G. Xu, Experimental study of NO reduction over biomass char, Fuel Process. Technol. 88(2007) 707-715.[65] M. Wojtowicz, J. Pels, J. Moulijn, Combustion of coal as a source of N2O emission, Fuel Process. Technol. 34(1993) 1-71.[66] T. Czakiert, Z. Bis, W. Muskala, W. Nowak, Fuel conversion from oxy-fuel combustion in a circulating fluidized bed, Fuel Process. Technol. 87(2006) 531-538.[67] L.I. Diez, C. Lupianez, I. Guedea, I. Bolea, L.M. Romeo, Anthracite oxy-combustion characteristics in a 90kW th fluidized bed reactor, Fuel Process. Technol. 139(2015) 196-203.[68] L. Alvarez, M. Gharebaghi, J. Jones, M. Pourkashanian, A. Williams, J. Riaza, C. Pevida, J. Pis, F. Rubiera, CFD modeling of oxy-coal combustion:Prediction of burnout, volatile and NO precursors release, Appl. Energy 104(2013) 653-665.[69] P. Glarborg, D. Kubel, P.G. Kristensen, J. Hansen, K. Dam-Johansen, Interactions of CO, NOx and H2O under post-flame conditions, Combust. Sci. Technol. 110(1995) 461-485.[70] B. Roy, L. Chen, S. Bhattacharya, Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal, Environ. Sci. Technol. 48(2014) 14844-14850.[71] M. de las Obras-Loscertales, A. Rufas, L. de Diego, F. Garcia-Labiano, P. Gayan, A. Abad, J. Adanez, Effects of temperature and flue gas recycle on the SO2 and NOx emissions in an oxy-fuel fluidized bed combustor, Energy Procedia 37(2013) 1275-1282.[72] J.A. Lasek, K. Glod, M. Janusz, K. Kazalski, J. Zuwala, Pressurized oxy-fuel combustion:A study of selected parameters, Energy Fuel 26(2012) 6492-6500.[73] H. Hosoda, T. Hirama, N. Azuma, K. Kuramoto, J.-i. Hayashi, T. Chiba, NOx and N2O emission in bubbling fluidized-bed coal combustion with oxygen and recycled flue gas:Macroscopic characteristics of their formation and reduction, Energy Fuel 12(1998) 102-108.[74] L. Tan, S. Li, W. Li, E. Shou, Q. Lu, Effects of oxygen staging and excess oxygen on O2/CO2 combustion with a high oxygen concentration in a circulating fluidized bed, Energy Fuel 28(2014) 2069-2075.[75] L. Jia, Y. Tan, D. McCalden, Y. Wu, I. He, R. Symonds, E. Anthony, Commissioning of a 0.8 MW th CFBC for oxy-fuel combustion, Int. J. Greenhouse Gas Control 7(2012) 240-243.[76] Haoyu Li, Shiyuan Li, Q. Ren, W. Li, M. Xu, J. Zhang Liu, Q. Lu, Experimental results for oxy-fuel combustion with high oxygen concentration in a 1MW th pilot-scale circulating fluidized bed, Energy Procedia 63(2014) 362-371.[77] L. Duan, H. Sun, C. Zhao, W. Zhou, X. Chen, Coal combustion characteristics on an oxy-fuel circulating fluidized bed combustor with warm flue gas recycle, Fuel 127(2014) 47-51.[78] Y. Tan, L. Jia, Y. Wu, E. Anthony, Experiences and results on a 0.8 MWth oxy-fuel operation pilot-scale circulating fluidized bed, Appl. Energy 92(2012) 343-347.[79] Y. Tan, L. Jia, Y. Wu, Some combustion characteristics of biomass and coal cofiring under oxy-fuel conditions in a pilot-scale circulating fluidized combustor, Energy Fuel 27(2013) 7000-7007.[80] G. Hofbauer, T. Beisheim, H. Dieter, G. Scheffknecht, Experiences from oxy-fuel combustion of bituminous coal in a 150 kW th circulating fluidized bed pilot facility, Energy Procedia 51(2014) 24-30.[81] W. Li, S. Li, Q. Ren, L. Tan, H. Li, J. Liu, Q. Lu, Study of oxy-fuel coal combustion in a 0.1 MWth circulating fluidized bed at high oxygen concentrations, Energy Fuel 28(2014) 1249-1254.[82] S. Li, M. Xu, L. Jia, L. Tan, Q. Lu, Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed, Appl. Energy 173(2016) 197-209.[83] Z. Han, X. Zeng, C. Yao, Y. Wang, G. Xu, Comparison of direct combustion in a circulating fluidized bed system and decoupling combustion in a dual fluidized bed system for distilled spirit lees, Energy Fuel 30(2015) 1693-1700.[84] L. Duan, Y. Duan, C. Zhao, E.J. Anthony, NO emission during co-firing coal and biomass in an oxy-fuel circulating fluidized bed combustor, Fuel 150(2015) 8-13.[85] Z. Zhao, W. Li, J. Qiu, X. Wang, B. Li, Influence of Na and Ca on the emission of NOx during coal combustion, Fuel 85(2006) 601-606.[86] S. Daood, M. Javed, B. Gibbs, W. Nimmo, NOx control in coal combustion by combining biomass co-firing, oxygen enrichment and SNCR, Fuel 105(2013) 283-292.[87] J.H. Sung, S.K. Back, B.M. Jeong, J.H. Kim, H.S. Choi, H.N. Jang, Y.C. Seo, Oxy-fuel cocombustion of sewage sludge and wood pellets with flue gas recirculation in a circulating fluidized bed, Fuel Process. Technol. 172(2018) 79-85.[88] F. Qian, C.S. Chyang, J.B. Chiou, J. Tso, Effect of flue gas recirculation (FGR) on NOx emission in a pilot-scale vortexing fluidized-bed combustor, Energy Fuel 25(2011) 5639-5646.[89] C. Zhu, S. Liu, H. Liu, J. Yang, X. Liu, G. Xu, NOx emission characteristics of fluidized bed combustion in atmospheres rich in oxygen and water vapor for high-nitrogen fuel, Fuel 139(2015) 346-355.[90] H. Zhou, Y. Li, N. Li, R. Qiu, K. Cen, Conversions of fuel-N to NO and N2O during devolatilization and char combustion stages of a single coal particle under oxyfuel fluidized bed conditions, J. Energy Inst. (2018).[91] C.-C. Cormos, Hydrogen and power co-generation based on coal and biomass/solid wastes co-gasification with carbon capture and storage, Int. J. Hydrog. Energy 37(2012) 5637-5648.[92] X. Mingxin, L. Shiyuan, L. Wei, L. Qinggang, Effects of gas staging on the NO emission during O2/CO2 combustion with high oxygen concentration in circulating fluidized bed, Energy Fuel 29(2015) 3302-3311.[93] Z. Gong, Z. Wang, L. Wang, A. Du, Combustion and NOx emissions in deep-airstaging combustion of char in a circulating fluidized bed, Journal of Physics:Conference Series, IOP Publishing 2017, p. 012011.[94] H. Zhou, Y. Li, N. Li, R. Qiu, S. Meng, K. Cen, Experimental study of the NO and N2O emissions during devolatilization and char combustion of a single biomass particle in O2/N2 and O2/H2O under low temperature condition, Fuel 206(2017) 162-170.[95] S. Li, C. Cadet, P.X. Thivel, F. Delpech, Towards the modelling and control of NOx emission in a fluidized bed sludge combustor, Comput. Chem. Eng. 35(2011) 1281-1294.[96] F.P. Qian, C.S. Chyang, K.S. Huang, J. Tso, Combustion and NO emission of high nitrogen content biomass in a pilot-scale vortexing fluidized bed combustor, Bioresour. Technol. 102(2011) 1892-1898.[97] M.J.H. Khan,M.A. Hussain, Z. Mansourpour, N. Mostoufi, N.M. Ghasem, E.C. Abdullah, CFD simulation of fluidized bed reactors for polyolefin production-a review, J. Ind. Eng. Chem. 20(2014) 3919-3946.[98] M. Jakir Hossain Khan, M. Azlan Hussain, I. Mujtaba, Multiphasic reaction modeling for polypropylene production in a pilot-scale catalytic reactor, Polymers 8(2016) 220.[99] M. Khan, M. Hussain, I. Mujtaba, Developed hybrid model for propylene polymerisation at optimum reaction conditions, Polymers 8(2016) 47.[100] L. Lu, Y. Jin, H. Liu, X. Ma, K. Yoshikawa, Nitrogen evolution during the cocombustion of hydrothermally treated municipal solid waste and coal in a bubbling fluidized bed, Waste Manag. 34(2014) 79-85.[101] R. Cai, H. Zhang, M. Zhang, H. Yang, J. Lyu, G. Yue, Development and application of the design principle of fluidization state specification in CFB coal combustion, Fuel Process. Technol. 174(2018) 41-52.[102] L. Niva, E. Ikonen, J. Kovacs, Self-optimizing control structure design in oxy-fuel circulating fluidized bed combustion, Int. J. Greenhouse Gas Control 43(2015) 93-107.[103] K. Sirisomboon, V.I. Kuprianov, P. Arromdee, Effects of design features on combustion efficiency and emission performance of a biomass-fuelled fluidized-bed combustor, Chem. Eng. Process. Process Intensif. 49(2010) 270-277.[104] S. Zhu, Q. Lyu, J. Zhu, C. Liang, Experimental study on NOx emissions of pulverized bituminous coal combustion preheated by a circulating fluidized bed, J. Energy Inst. (2018).[105] B. Liu, X.M. Yang, W.L. Song, W.G. Lin, Process simulation of formation and emission of NO and N2O during coal decoupling combustion in a circulating fluidized bed combustor using aspen plus, Chem. Eng. Sci. 71(2012) 375-391.[106] C. Yao, L. Dong, Y. Wang, J. Yu, Q. Li, G. Xu, S. Gao, B. Yi, J. Yang, Fluidized bed pyrolysis of distilled spirits lees for adapting to its circulating fluidized bed decoupling combustion, Fuel Process. Technol. 92(2011) 2312-2319.[107] L. Dong, S. Gao, W. Song, J. Li, G. Xu, NO reduction in decoupling combustion of biomass and biomass-coal blend, Energy Fuel 23(2008) 224-228.[108] L. Cai, X. Shang, S. Gao, Y. Wang, L. Dong, G. Xu, Low-NOx coal combustion via combining decoupling combustion and gas reburning, Fuel 112(2013) 695-703.[109] X. Zeng, Y. Dong, F. Wang, P. Xu, R. Shao, P. Dong, G. Xu, L. Dong, Fluidized bed twostage gasification process for clean fuel gas production from herb residue:Fundamentals and demonstration, Energy Fuel 30(2016) 7277-7283.[110] K. Narayanan, E. Natarajan, Experimental studies on cofiring of coal and biomass blends in India, Renew. Energy 32(2007) 2548-2558.[111] A. Demirbas, Sustainable cofiring of biomass with coal, Energy Convers. Manag. 44(2003) 1465-1479.[112] J.J. Battista Jr., E.E. Hughes, D.A. Tillman, Biomass cofiring at Seward Station, Biomass Bioenergy 19(2000) 419-427.[113] Q. Ren, C. Zhao, Evolution of fuel-N in gas phase during biomass pyrolysis, Renew. Sust. Energ. Rev. 50(2015) 408-418.[114] E. Agbor, X. Zhang, A. Kumar, A review of biomass co-firing in North America, Renew. Sust. Energ. Rev. 40(2014) 930-943.[115] P.A. Behnisch, K. Hosoe, K. Shiozaki, T. Kiryu, K. Komatsu, K.-W. Schramm, S.-I.Sakai, Melting and incineration plants of municipal waste, Environ. Sci. Pollut. Res.9(2002) 337-344.[116] F. Bilgili, I. Ozturk, E. Kocak, U. Bulut, Y. Pamuk, E. Mugaloglu, H.H. Baglitas, The influence of biomass energy consumption on CO2 emissions:A wavelet coherence approach, Environ. Sci. Pollut. Res. 23(2016) 19043-19061.[117] X. Wang, Q. Ren, W. Li, H. Li, S. Li, Q. Lu, Nitrogenous gas emissions from coal/biomass co-combustion under a high oxygen concentration in a circulating fluidized bed, Energy Fuel 31(2017) 3234-3242.[118] D. Liu, T. Mi, B. Shen, B. Feng, F. Winter, Reducing N2O emission by co-combustion of coal and biomass, Energy Fuel 16(2002) 525-526.[119] D. Dayton, A Summary of NOx Emissions Reduction from Biomass Cofiring, NREL/TP-510-32260, National Renewable Energy Laboratory, Golden, CO, 2002.[120] S. Sahu, N. Chakraborty, P. Sarkar, Coal-biomass co-combustion:An overview,Renew. Sust. Energ. Rev. 39(2014) 575-586.[121] S. Krerkkaiwan,C. Fushimi, A. Tsutsumi, P. Kuchonthara, Synergetic effect during co-pyrolysis/gasification of biomass and sub-bituminous coal, Fuel Process. Technol.115(2013) 11-18.[122] L. Emami-Taba, M.F. Irfan, W.M.A.W. Daud, M.H. Chakrabarti, Fuel blending effects on the co-gasification of coal and biomass-a review, Biomass Bioenergy 57(2013)249-263.[123] L.E. Taba, M.F. Irfan, W.A.M.W. Daud, M.H. Chakrabarti, The effect of temperature on various parameters in coal, biomass and CO-gasification:A review, Renew.Sust. Energ. Rev. 16(2012) 5584-5596.[124] L. Armesto, H. Boerrigter, A. Bahillo, J. Otero, N2O emissions from fluidised bed combustion. The effect of fuel characteristics and operating conditions☆, Fuel 82(2003) 1845-1850.[125] J. Riaza, M. Gil, L. Alvarez, C. Pevida, J. Pis, F. Rubiera, Oxy-fuel combustion of coal and biomass blends, Energy 41(2012) 429-435.[126] B. Shen, T. Mi, D. Liu, B. Feng, Q. Yao, F. Winter, N2O emission under fluidized bed combustion condition, Fuel Process. Technol. 84(2003) 13-21.[127] S. Benyahia, H. Arastoopour, T. Knowlton, H. Massah, Simulation of particles and gas flow behavior in the riser section of a circulating fluidized bed using the kinetic theory approach for the particulate phase, Powder Technol. 112(2000) 24-33.[128] R. Saidur, E. Abdelaziz, A. Demirbas, M. Hossain, S. Mekhilef, A review on biomass as a fuel for boilers, Renew. Sust. Energ. Rev. 15(2011) 2262-2289.[129] F. Sher, M.A. Pans, C. Sun, C. Snape, H. Liu, Oxy-fuel combustion study of biomass fuels in a 20 kW th fluidized bed combustor, Fuel 215(2018) 778-786.[130] L. Alvarez, C. Yin, J. Riaza, C. Pevida, J. Pis, F. Rubiera, Biomass co-firing under oxyfuel conditions:A computational fluid dynamics modelling study and experimental validation, Fuel Process. Technol. 120(2014) 22-33.[131] B. Arias, C. Pevida, F. Rubiera, J. Pis, Effect of biomass blending on coal ignition and burnout during oxy-fuel combustion, Fuel 87(2008) 2753-2759.[132] J. Krzywanski, R. Rajczyk, M. Bednarek, M. Wesolowska, W. Nowak, Gas emissions from a large scale circulating fluidized bed boilers burning lignite and biomass, Fuel Process. Technol. 116(2013) 27-34.[133] N. Panwar, S. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection:A review, Renew. Sust. Energ. Rev. 15(2011) 1513-1524.[134] N.S. Yuzbasi, N. Selcuk, Air and oxy-fuel combustion characteristics of biomass/lignite blends in TGA-FTIR, Fuel Process. Technol. 92(2011) 1101-1108.[135] M. Gil, J. Riaza, L. Alvarez, C. Pevida, J. Pis, F. Rubiera, A study of oxy-coal combustion with steam addition and biomass blending by thermogravimetric analysis,J. Therm. Anal. Calorim. 109(2011) 49-55.[136] R. Chintala, R.K. Owen, T.E. Schumacher, K.A. Spokas, L.M. McDonald, S. Kumar, D.E.Clay, D.D. Malo, B. Bleakley, Denitrification kinetics in biomass-and biocharamended soils of different landscape positions, Environ. Sci. Pollut. Res. 22(2015)5152-5163.[137] G. Pu, H. Zan, J. Du, X. Zhang, Study on NO emission in the oxy-fuel combustion of co-firing coal and biomass in a bubbling fluidized bed combustor, Bioresources 12(2017) 1890-1902.[138] P. Nanou, H.E. Gutierrez Murillo, W.P. van Swaaij, G. van Rossum, S.R. Kersten,Intrinsic reactivity of biomass-derived char under steam gasification conditionspotential of wood ash as catalyst, Chem. Eng. J. 217(2013) 289-299.[139] R. Timpe, R. Kulas, W. Hauserman, Catalytic effect on the gasification of a bituminous argonne premium coal sample using wood ash or taconite as additive, ACS Div. Fuel Chem. Preprints 36(1991) 892-897.[140] N. Rodriguez, M. Alonso, J.C. Abanades, A. Charitos, C. Hawthorne, G. Scheffknecht,D.Y. Lu, E.J. Anthony, Comparison of experimental results from three dual fluidized bed test facilities capturing CO2 with CaO, Energy Procedia 4(2011) 393-401.[141] J. Kalembkiewicz, U. Chmielarz, Ashes from co-combustion of coal and biomass:New industrial wastes, Resour. Conserv. Recycl. 69(2012) 109-121.[142] S. Li, J. Yu, X. Wei, X. Guo, Y. Chen, Catalytic reduction of nitric oxide by carbon moNOxide over coal gangue hollow ball, Fuel Process. Technol. 125(2014) 163-169.[143] S.V. Makarytchev, K.F. Cen, Z.Y. Luo, X.T. Li, Catalyzed NOx formation under fluidized-bed combustion conditions, Chem. Eng. Sci. 50(1995) 2489-2490.[144] G. Loffler, V.J. Wargadalam, F. Winter, Catalytic effect of biomass ash on CO, CH4 and HCN oxidation under fluidised bed combustor conditions, Fuel 81(2002)711-717.[145] J.X. Chen, K.L. Pan, S.J. Yu, S.Y. Yen, M.B. Chang, Combined fast selective reduction using Mn-based catalysts and nonthermal plasma for NOx removal, Environ. Sci.Pollut. Res. 24(2017) 21496-21508.[146] K.-Q. Tran, P. Kilpinen, N. Kumar, In-situ catalytic abatement of NOx during fluidized bed combustion-A literature study, Appl. Catal. B Environ. 78(2008)129-138.[147] A. Sultana, M. Sasaki, K. Suzuki, H. Hamada, Tuning the NOx conversion of cu-Fe/ZSM-5 catalyst in NH3-SCR, Catal. Commun. 41(2013) 21-25.[148] B. Tu, N. Shi, W. Sun, L. Cao, J. Yang, SO2-tolerant and H2O-promoting Pt/C catalysts for efficient NO removal via fixed-bed H2-SCR, Environ. Sci. Pollut. Res. 24(2017) 676-684.[149] X. Cheng, X.T. Bi, Catalytic NOx reduction in a novel i-CFB reactor:I. Kinetics development and modeling of reduction zone, Ind. Eng. Chem. Res. (2014).[150] X. Cheng, X.T. Bi, Modeling and simulation of nitrogen oxides adsorption in fluidized bed reactors, Chem. Eng. Sci. 96(2013) 42-54.[151] S. Shrestha, B.S. Ali, M.D.B. Hamid, Cold flow model of dual fluidized bed:A review, Renew. Sust. Energ. Rev. 53(2016) 1529-1548.[152] P.F. Hansen, K. Dam-Johansen, Limestone catalyzed reduction of NO and N2O under fluidized bed combustion conditions, Proceedings of the 1993 Int'l Conf. On Fluidized Bed Combustion, ASME 1993, pp. 779-787.[153] S.V. Makarytchev, Catalyzed NOx Formation under Fluidized-Bed Combustion Conditions, Pergamon, 1994.[154] A. Bueno-Lopez, A. Garcia-Garcia, Combined SO2 and NOx removal at moderate temperature by a dual bed of potassium-containing coal-pellets and calciumcontaining pellets, Fuel Process. Technol. 86(2005) 1745-1759.[155] X. Liu, Z. Luo, C. Yu, Effect of limestone on the emission of NO during petroleum coke combustion, Fuel 224(2018) 1-9.[156] J. Van Caneghem, A. Brems, P. Lievens, C. Block, P. Billen, I. Vermeulen, R. Dewil, J.Baeyens, C. Vandecasteele, Fluidized bed waste incinerators:Design, operational and environmental issues, Prog. Energy Combust. Sci. 38(2012) 551-582.[157] B. Xie, H. Luo, Q. Tang, J. Du, Z. Liu, C. Tao, The black rock series supported SCR catalyst for NOx removal, Environ. Sci. Pollut. Res. 24(2017) 21761-21769.[158] A. Hayhurst, A. Lawrence, The effect of solid CaO on the production of NOx and N2O in fluidized bed combustors:Studies using pyridine as a prototypical nitrogenous fuel, Combust. Flame 105(1996) 511-527.[159] Lingnan Wu, Wu Qin, Xiaoying Hu, Shaoda Ju, Changqing Dong, Yongping Yang, Decomposition and reduction of N2O on CaS (100) surface:A theoretical account, Surf. Sci. (2015).[160] H.Y. Chen, T. Voskoboinikov, W.M.H. Sachtler, Reduction of NOx over Fe/ZSM-5 catalysts:Adsorption complexes and their reactivity toward hydrocarbons, J. Catal. 180(1998) 171-183(ARTICLE NO. CA982277(1998)).[161] C. Xu, J. Donald, E. Byambajav, Y. Ohtsuka, Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasification, Fuel 89(2010) 1784-1795.[162] J.P. Cao, P. Shi, X.Y. Zhao, X.Y. Wei, T. Takarada, Catalytic reforming of volatiles and nitrogen compounds from sewage sludge pyrolysis to clean hydrogen and synthetic gas over a nickel catalyst, Fuel Process. Technol. 123(2014) 34-40.[163] S. Mahmoudi, J. Baeyens, J.P. Seville, NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass, Biomass Bioenergy 34(2010) 1393-1409.[164] M.E. Boot-Handford, J.C. Abanades, E.J. Anthony, M.J. Blunt, S. Brandani, N. Mac Dowell, J.R. Fernandez, M.-C. Ferrari, R. Gross, J.P. Hallett, Carbon capture and storage update, Energy Environ. Sci. 7(2014) 130-189.[165] S.I. Gao Jian, S.I. Zhang, The application of advanced gas purification technologies that meet environmental requirements of china's ultra -low-emission technologies d-mec for coal-fired power plants, Conference Paper, VTI 2016 in Moscow, 2016. |
[1] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling[J]. 中国化学工程学报, 2023, 59(7): 105-117. |
[2] | Qian Cheng, Dunyu Liu, Jun Chen, Jing Jin, Wei Li, Shuaishuai Yu. Gas-phase oxidation of NO at high pressure relevant to sour gas compression purification process for oxy-fuel combustion flue gas[J]. 中国化学工程学报, 2019, 27(4): 884-895. |
[3] | Qinwen Liu, Yan Shi, Wenqi Zhong, Aibing Yu. Co-firing of coal and biomass in oxy-fuel fluidized bed for CO2 capture: A review of recent advances[J]. 中国化学工程学报, 2019, 27(10): 2261-2272. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||