[1] |
C.O. Robichaud, A.E. Uyar, M.R. Darby, L.G. Zucker, M.R. Wiesner, Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment, Environ. Sci. Technol. 43(2009) 4227-4233.
|
[2] |
K. Tyner, A. Wokovich, D. Godar, W. Doub, N. Sadrieh, The state of nano-sized titanium dioxide (TiO2) may affect sunscreen performance, Int. J. Cosmet. Sci. 33(2011) 234-244.
|
[3] |
Y. Yang, K. Doudrick, X. Bi, K. Hristovski, P. Herckes, P. Westerhoff, R. Kaegi, Characterization of food-grade titanium dioxide:The presence of nanosized particles, Environ. Sci. Technol. 48(2014) 6391-6400.
|
[4] |
A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, N. von Goetz, Titanium dioxide nanoparticles in food and personal care products, Environ. Sci. Technol. 46(2012) 2242-2250.
|
[5] |
A. Zielinska, E. Kowalska, J.W. Sobczak, I. Lacka, M. Gazda, B. Ohtani, J. Hupka, A. Zaleska, Silver-doped TiO2 prepared by microemulsion method:Surface properties, bio-and photoactivity, Sep. Purif. Technol. 72(2010) 309-318.
|
[6] |
S. Yamada, K. Miyazawa, H. Naka, Y. Yoshida, Titanium Dioxide Concentrate and Its Manufacturing Process, 1974.
|
[7] |
J.B. Rosenbaum, Titanium technology trends, JOM 34(1982) 76-80.
|
[8] |
B. Liang, C. Li, C. Zhang, Y. Zhang, Leaching kinetics of Panzhihua ilmenite in sulfuric acid, Hydrometallurgy 76(2005) 173-179.
|
[9] |
C. Li, B. Liang, L. Guo, Z. Wu, Effect of mechanical activation on the dissolution of Panzhihua ilmenite, Miner. Eng. 19(2006) 1430-1438.
|
[10] |
J.A. Rahm, D.G. Cole, Process for Manufacturing Titanium Compounds Using a Reducing Agent, (US) 1981.
|
[11] |
Z. She, S. Xu, J. Fan, Decomposing titanium concentrate with acid in liquid phase by fluidization, Multipurpose Utilization of Mineral Resources, 1998.
|
[12] |
J.L. Jing, Q.Z. Zhang, L.Y. Qiu, B. Liang, An investigation on the liquid phase digestion of ilmenite in sulfate process TiO2 pigment production, Chem. React. Eng. Technol. 19(2003) 337-343.
|
[13] |
P. Balaz, Mechanical activation in hydrometallurgy, Int. J. Miner. Process. 72(2003) 341-354.
|
[14] |
P. Balaz, A. Alacova, M. Achimovicova, J. Ficeriova, E. Godocikova, Mechanochemistry in hydrometallurgy of sulfide minerals, Hydrometallurgy 77(2005) 9-17.
|
[15] |
A.Z. Juhasz, L. Opoczky, Mechanical Activation of Minerals by Grinding Pulverizing and Morphology of Particles, Halsted Press, New York, NY (United States), 1990.
|
[16] |
P. Balaz, Mechanochemistry in Nanoscience and Minerals Engineering, Springer, Berlin Heidelberg, 2008.
|
[17] |
P. Balaz, M. Achimovicova, Mechano-chemical leaching in hydrometallurgy of complex sulphides, Hydrometallurgy 84(2006) 60-68.
|
[18] |
N.H. Fletcher, N.J. Welham, Enhanced dissolution following extended milling, AIChE J. 46(2000) 666-669.
|
[19] |
C. Sasikumar, D.S. Rao, S. Srikanth, B. Ravikumar, N.K. Mukhopadhyay, S.P. Mehrotra, Effect of mechanical activation on the kinetics of sulfuric acid leaching of beach sand ilmenite from Orissa, India, Hydrometallurgy 75(2004) 189-204.
|
[20] |
D. Tromans, J.A. Meech, Enhanced dissolution of minerals:stored energy, amorphism and mechanical activation, Miner. Eng. 14(2001) 1359-1377.
|
[21] |
N.J. Welham, D.J. Llewellyn, Mechanical enhancement of the dissolution of ilmenite, Miner. Eng. 11(1998) 827-841.
|
[22] |
L. Wei, H. Hu, Q. Chen, J. Tan, Effects of mechanical activation on the HCl leaching behavior of plagioclase, ilmenite and their mixtures, Hydrometallurgy 99(2009) 39-44.
|
[23] |
L. Zhang, H. Hu, L. Wei, Q. Chen, J. Tan, Effects of mechanical activation on the HCL leaching behavior of titanaugite, ilmenite, and their mixtures, Metall. Mater. Trans. B 41(2010) 1158-1165.
|
[24] |
L. Zhang, H. Hu, Z. Liao, Q. Chen, J. Tan, Hydrochloric acid leaching behavior of different treated Panxi ilmenite concentrations, Hydrometallurgy 107(2011) 40-47.
|
[25] |
Y. Chen, T. Hwang, M. Marsh, J.S. Williams, Study on mechanism of mechanical activation, Mater. Sci. Eng. A 226-228(1997) 95-98.
|
[26] |
Y. Chen, J.S. Williams, S.J. Campbell, G.M. Wang, Increased dissolution of ilmenite induced by high-energy ball milling, Mater. Sci. Eng. A 271(1999) 485-490.
|
[27] |
C. Sasikumar, D.S. Rao, S. Srikanth, N.K. Mukhopadhyay, S.P. Mehrotra, Dissolution studies of mechanically activated Manavalakurichi ilmenite with HCl and H2SO4, Hydrometallurgy 88(2007) 154-169.
|
[28] |
C. Li, B. Liang, L.H. Guo, Dissolution of mechanically activated Panzhihua ilmenites in dilute solutions of sulphuric acid, Hydrometallurgy 89(2007) 1-10.
|
[29] |
M. Achimovicova, S. Hassan-Pour, E. Gock, V. Vogt, P. Balaz, B. Friedrich, Aluminothermic production of titanium alloys (part 1):Synthesis of TiO2 as input material, Assoc. Metall. Eng. Serbia (AMES) 20(2014) 141-154.
|
[30] |
N.G. Kostova, M. Achimovicova, A. Eliyas, N. Velinov, V. Blaskov, I. Stambolova, E. Gock, TiO2 obtained from mechanically activated ilmenite and its photocatalytic properties, Bulg. Chem. Commun. 47(2015) 317-322.
|
[31] |
C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci. 46(2004) 1-184.
|
[32] |
S. Fadda, A. Cincotti, A. Concas, M. Pisu, G. Cao, Modelling breakage and reagglomeration during fine dry grinding in ball milling devices, Powder Technol. 194(2009) 207-216.
|
[33] |
N.J. Welham, The effect of extended milling on minerals, CIM Bull. 90(1997) 64-68.
|
[34] |
A. Johansen, T. Schaefer, Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer, Eur. J. Pharm. Sci. 12(2001) 297-309.
|
[35] |
L. Lutterotti, P. Scardi, P. Maistrelli, LSI-A computer program for simultaneous refinement of material structure and microstructure, J. Appl. Crystallogr. 25(1992) 459-462.
|
[36] |
N.J. Welham, Enhanced dissolution of tantalite/columbite following milling, Int. J. Miner. Process. 61(2001) 145-154.
|
[37] |
A.M. Kalinkin, E.V. Kalinkina, Modelling of the sulfuric acid leaching of mechanically activated titanite, Hydrometallurgy 108(2011) 189-194.
|
[38] |
G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall. 1(1953) 22-31.
|
[39] |
H. Li, Effect of Experimental Facility Style on the Activation of Mineral, 1997.
|
[40] |
G. Chen, J.H. Peng, J. Chen, Optimizing conditions for wet grinding of synthetic rutile using response surface methodology, Miner. Metall. Process. 28(2011) 44-48.
|
[41] |
G. Chen, J. Peng, J. Chen, S. Zhang, Response surface methodology applied to optimize the experimental conditions for preparing synthetic rutile by microwave irradiation:High temperature materials and processes, High Temp. Mater. Processes 28(2009) 165-174.
|
[42] |
Y. Chen, J. Williams, B. Ninham, Mechanochemical reactions of ilmenite with different additives, Colloids Surf. A Physicochem. Eng. Asp. 129(1997) 61-66.
|
[43] |
Y. Chen, Different oxidation reactions of ilmenite induced by high energy ball milling, J. Alloys Compd. 266(1998) 150-154.
|
[44] |
C. Li, B. Liang, Study on the mechanochemical oxidation of ilmenite, J. Alloys Compd. 459(2008) 354-361.
|
[45] |
O. Levenspiel, Chemical reaction engineering, Ind. Eng. Chem. Res. 38(1999) 1055-1076.
|
[46] |
D. Murhammer, D. Davis, O. Levenspiel, Shringking core model/reaction control for a wide size distribution of solids, Chem. Eng. J. 32(1986) 87-91.
|
[47] |
P.K. Gbor, C.Q. Jia, Critical evaluation of coupling particle size distribution with the shrinking core model, Chem. Eng. Sci. 59(2004) 1979-1987.
|
[48] |
T.C. Veloso, J.J.M. Peixoto, M.S. Pereira, V.A. Leao, Kinetics of chalcopyrite leaching in either ferric sulphate or cupric sulphate media in the presence of NaCl, Int. J. Miner. Process. 148(2016) 147-154.
|
[49] |
P. Gonzalez-Tello, F. Camacho, J.M. Vicaria, P.A. Gonzalez, A modified Nukiyama-Tanasawa distribution function and a Rosin-Rammler model for the particle-sizedistribution analysis, Powder Technol. 186(2008) 278-281.
|
[50] |
A. Monteiro, A. Afolabi, E. Bilgili, Continuous production of drug nanoparticle suspensions via wet stirred media milling:A fresh look at the Rehbinder effect, Drug Dev. Ind. Pharm. 39(2013) 266.
|
[51] |
D.H. Kaelble, A relationship between the fracture mechanics and surface energetics failure criteria, J. Appl. Polym. Sci. 18(1974) 1869-1889.
|
[52] |
S.L.S. Stipp, Toward a conceptual model of the calcite surface:hydration, hydrolysis, and surface potential, Geochim. Cosmochim. Acta 63(2000) 3121-3131.
|