[1] X. Wang, J. Sun, J. Zhao, W. Chen, Experimental detection of bubble-wall interactions in a vertical gas-liquid flow, Chin. J. Chem. Eng. 25(2017) 838-847. [2] G.R. Baker, D.W. Moore, The rise and distortion of a two-dimensional gas bubble in an inviscid liquid, Phys. Fluids 1(1989) 1451-1459. [3] J. Katz, C. Meneveau, Wake-induced relative motion of bubbles rising in line, Int. J. Multiphase Flow 22(1996) 239-258. [4] L. Böhm, M. Brehmer, M. Kraume, Comparison of the single bubble ascent in a Newtonian and a non-Newtonian liquid:A phenomenological PIV study, Chem. Ing. Tech. 88(2016) 93-106. [5] A.A. Kulkarni, J.B. Joshi, Bubble formation and bubble rise velocity in gas-liquid systems:A review, Ind. Eng. Chem. Res. 44(2005) 5873-5931. [6] D. Funfschilling, H.Z. Li, Effects of the injection period on the rise velocity and shape of a bubble in a non-Newtonian fluid, Chem. Eng. Res. Des. 84(2006) 875-883. [7] Z. Cai, Y. Bao, Z. Gao, Hydrodynamic behavior of a single bubble rising in viscous liquids, Chin. J. Chem. Eng. 18(2010) 923-930. [8] P. Zahedi, R. Saleh, R. Moreno-Atanasio, K. Yousefi, Influence of fluid properties on bubble formation, detachment, rising and collapse; investigation using volume of fluid method, Korean J. Chem. Eng. 31(2014) 1349-1361. [9] J. Hua, J. Lou, Numerical simulation of bubble rising in viscous liquid, J. Comput. Phys. 222(2007) 769-795. [10] Z. Liu, Y. Zheng, L. Jia, Q. Zhang, Study of bubble induced flow structure using PIV, Chem. Eng. Sci. 60(2005) 3537-3552. [11] F.H. Garner, D. Hammerton, Circulation inside gas bubbles, Chem. Eng. Sci. 3(1954) 1-11. [12] Y. Li, J.P. Zhang, L.S. Fan, Discrete-phase simulation of single bubble rise behavior at elevated pressures in a bubble column, Chem. Eng. Sci. 55(2000) 4597-4609. [13] M. Wu, M. Gharib, Experimental studies on the shape and path of small air bubbles rising in clean water, Phys. Fluids 14(2002) 49-52. [14] W. Zhang, Y. Yong, G. Zhang, C. Yang, Z. Mao, Mixing characteristics and bubble behavior in an airlift internal loop reactor with low aspect ratio, Chin. J. Chem. Eng. 22(2014) 611-621. [15] X. Zhang, H. Dong, D. Bao, Y. Huang, X. Zhang, S. Zhang, Effect of small amount of water on CO2 bubble behavior in ionic liquid systems, Ind. Eng. Chem. Res. 53(2013) 428-439. [16] S. Shu, N. Yang, Direct numerical simulation of bubble dynamics using phase-field model and lattice Boltzmann method, Ind. Eng. Chem. Res. 52(2013) 11391-11403. [17] R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Academic Press, New York, 1978. [18] L. Zhang, C. Yang, Z.S. Mao, Numerical simulation of a bubble rising in shearthinning fluids, J. Non-Newtonian Fluid 165(2010) 555-567. [19] W.J. Nock, S. Heaven, C.J. Banks, Mass transfer and gas-liquid interface properties of single CO2 bubbles rising in tap water, Chem. Eng. Sci. 140(2016) 171-178. [20] S.S. Ozturk, A. Schumpe, W.D. Deckwer, Organic liquids in a bubble column:Holdups and mass transfer coefficients, AICHE J. 33(1987) 1473-1480. [21] Y. Kawase, B. Halard, M. Moo-Young, Theoretical prediction of volumetric mass transfer coefficients in bubble columns for Newtonian and non-Newtonian fluids, Chem. Eng. Sci. 42(1987) 1609-1617. [22] B. Zhao, J.F. Wang, W.G. Yang, Y. Jin, Gas-liquid mass transfer in slurry bubble systems, Chem. Eng. J. 96(2003) 23-27. [23] J. Aoki, Y. Hori, K. Hayashi, S. Hosokawa, A. Tomiyama, Mass transfer from single carbon dioxide bubbles in alcohol aqueous solutions in vertical pipes, Int. J. Heat Mass Transf. 108((2017) 1991-2001. [24] D. Bhaga, M.E. Weber, Bubbles in viscous liquids:Shapes, wakes and velocities, J. Fluid Mech. 105(1981) 61-85. [25] D. Funfschilling, H.Z. Li, Flow of non-Newtonian fluids around bubbles:PIV measurements and birefringence visualization, Chem. Eng. Sci. 56(2001) 1137-1141. [26] M. Filla, J.F. Davidson, J.F. Bates, M.A. Eccles, Gas phase controlled mass transfer from a bubble, Chem. Eng. Sci. 31(1976) 359-367. [27] M.R. Ansari, M.E. Nimvari, Bubble viscosity effect on internal circulation within the bubble rising due to buoyancy using the level set method, Ann. Nucl. Energy 38(2011) 2770-2778. [28] A.R. Premlata, M.K. Tripathi, B. Karri, K.C. Sahu, Dynamics of an air bubble rising in a non-Newtonian liquid in the axisymmetric regime, J. Non-Newtonian Fluid 239(2017) 53-61. [29] S.S. Rabha, V.V. Buwa, Volume-of-fluid (VOF) simulations of rise of single/multiple bubbles in sheared liquids, Chem. Eng. Sci. 65(2010) 527-537. [30] X.F. Jiang, C. Zhu, H.Z. Li, Bubble pinch-off in Newtonian and non-Newtonian fluids, Chem. Eng. Sci. 170(2017) 98-104. [31] F. Raymond, J.M. Rosant, A numerical and experimental study of the terminal velocity and shape of bubbles in viscous liquids, Chem. Eng. Sci. 55(2000) 943-955. [32] M. Maldonado, J.J. Quinn, C.O. Gomez, J.A. Finch, An experimental study examining the relationship between bubble shape and rise velocity, Chem. Eng. Sci. 98(2013) 7-11. [33] J. Klostermann, K. Schaake, R. Schwarze, Numerical simulation of a single rising bubble by VOF with surface compression, Int. J. Numer. Methods Fluids 71(2013) 960-982. [34] S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, L. Tobiska, Quantitative benchmark computations of two-dimensional bubble dynamics, Int. J. Numer. Methods Fluids 60(2009) 1259-1288. |