[1] A. Maghari, L. Hosseinzadeh-Shahri, Evaluation of the performance of cubic equations of state in predicting the regularities in dense fluids, Fluid Phase Equilib. 206(2003) 287-311. [2] G. Wilczek-Vera, J.H. Vera, Understanding cubic equations of state:A search for the hidden clues of their success, AIChE J. 61(2015) 2824-2831. [3] J.O. Valderrama, The legacy of Johannes Diderik van der Waals, a hundred years after his nobel prize for physics, J. Supercrit. Fluids 55(2010) 415-420. [4] G. Schmidt, H. Wenzel, A modified van der Waals type equation of state, Chem. Eng. Sci. 35(1980) 1503-1512. [5] Y. Adachi, B.C.Y. Lu, H. Sugie, A new four parameter equation of state, Fluid Phase Equilib. 11(1983) 29-48. [6] H. Hinojosa-Gomez, J.F. Barragan-Aroche, E.R. Bazua-Rueda, A modification to the Peng-Robinson-fitted equation of state for pure substances, Fluid Phase Equilib. 298(2010) 12-23. [7] P. Hosseinifar, S. Jamshidi, An evolved cubic equation of state with a new attractive term, Fluid Phase Equilib. 408(2016) 58-71. [8] J.S. Lopez-Echeverry, S. Reif-Acherman, E. Araujo-Lopez, Peng-Robinson equation of state:40 years through cubics, Fluid Phase Equilib. 447(2017) 39-71. [9] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27(1972) 1197-1203. [10] D.Y. Peng, D.B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam. 15(1976) 59-64. [11] A. Peneloux, R.E. Rauzy, R. Freze, A consistent correction for Redlich-Kwong-Soave volumes, Fluid Phase Equilib. 8(1982) 7-23. [12] P. Watson, M. Casella, S. Salerno, D. Tassios, Prediction of vapor pressures and saturated molar volumes with a simple cubic equation of state:part Ⅱ:The van der Waals-711 EOS, Fluid Phase Equilib. 27(1986) 35-52. [13] J.C. Tsai, Y.P. Chen, Application of a volume-translated Peng-Robinson equation of state on vapor-liquid equilibrium calculations, Fluid Phase Equilib. 145(1998) 193-215. [14] H.B. de Sant'Ana, P. Ungerer, J.C. De Hemptinne, Evaluation of an improved volume translation for the prediction of hydrocarbon volumetric properties, Fluid Phase Equilib. 154(1999) 193-204. [15] J.N. Jaubert, R. Privat, Y. Le Guennec, L. Coniglio, Note on the properties altered by application of a Peneloux-type volume translation to an equation of state, Fluid Phase Equilib. 419(2016) 88-95. [16] R. Privat, M. Visconte, A. Zazoua-Khames, J.N. Jaubert, Analysis and prediction of the alpha-function parameters used in cubic equations of state, Chem. Eng. Sci. 126(2015) 584-603. [17] Y. Le Guennec, R. Privat, J.N. Jaubert, Development of the translated-consistent tc-PR and tc-RK cubic equations of state for a safe and accurate prediction of volumetric, energetic and saturation properties of pure compounds in the sub and super-critical domains, Fluid Phase Equilib. 429(2016) 301-312. [18] N.C. Patel, A.S. Teja, A new cubic equation of state for fluids and fluid mixtures, Chem. Eng. Sci. 37(1982) 463-473. [19] C.H. Twu, J.E. Coon, J.R. Cunningham, A new cubic equation of state, Fluid Phase Equilib. 75(1992) 65-79. [20] R. Schmidt, W. Wanger, A new form of the equation of state for pure substances and its application to oxygen, Fluid Phase Equilib. 19(1985) 175-200. [21] A.M. Abudour, S.A. Mohammad, R.L. Robinson Jr., K.A.M. Gasem, Volume-translated Peng-Robinson equation of state for saturated and single-phase liquid densities, Fluid Phase Equilib. 335(2012) 74-87. [22] M.A. Trebble, P.R. Bishnoi, Development of a new four parameter cubic equation of state, Fluid Phase Equilib. 35(1987) 1-18. [23] D.S. Jan, F.N. Tsai, A new four-parameter cubic equation of state for fluids, Can. J. Chem. Eng. 69(1991) 992-996. [24] P.H. Salim, M.A. Trebble, A modified Trebble-Bishnoi equation of state:Thermodynamic consistency revisited, Fluid Phase Equilib. 65(1991) 59-71. [25] P.N.P. Ghoderao, V.H. Dalvi, M. Narayan, A four-parameter cubic equation of state for pure compounds and mixtures, Chem. Eng. Sci. 190(2018) 173-189. [26] L.B. Loeb, The Kinetic Theory of Gases, 3rd Dover publications, New York, 2004. [27] A. Dashtizadeh, G.R. Pazuki, V. Taghikhani, C. Ghotbi, A new two-parameter cubic equation of state for predicting phase behavior of pure compounds and mixtures, Fluid Phase Equilib. 242(2006) 19-28. [28] A. Haghtalab, P. Mahmoodi, S.H. Mazloumi, A modified Peng-Robinson equation of state for phase equilibrium calculation of liquefied, synthetic natural gas, and gas condensate mixtures, Can. J. Chem. Eng. 89(2011) 1376-1387. [29] A.H. Farrokh-Niae, H. Moddarress, M. Mohsen-Nia, A three-parameter cubic equation of state for prediction of thermodynamic properties of fluids, J. Chem. Thermodyn. 40(2008) 84-95. [30] Z. Duan, J. Hu, A new cubic equation of state and its applications to the modeling of vapor-liquid equilibria and volumetric properties of natural fluids, Geochim. Cosmochim. Acta 68(2004) 2997-3009. [31] L.A. Forero G., J.A. Velasquez J., A modified Patel-Teja cubic equation of state. Part Ⅱ:Parameters for polar substances and its mixtures, Fluid Phase Equilib. 364(2015) 75-87. [32] R.S. Kamath, L.T. Biegler, I.E. Grossmann, An equation-oriented approach for handling thermodynamics based on cubic equation of state in process optimization, Comput. Chem. Eng. 34(2010) 2085-2096. [33] R. Monroy-Loperena, A note on the analytical solution of cubic equations of state in process simulation, Ind. Eng. Chem. Res. 51(2012) 6972-6976. [34] M.M. Abbot, Cubic equations of state, AIChE J. 19(1973) 596-601. [35] Y. Le Guennec, R. Privat, S. Lasala, J.N. Jaubert, On the imperative need to use a consistent α-function for the prediction of pure-compound supercritical properties with a cubic equation of state, Fluid Phase Equilib. 445(2014) 45-53. [36] Y. Le Guennec, S. Lasala, R. Privat, J.N. Jaubert, A consistency test for α-functions of cubic equations of state, Fluid Phase Equilib. 427(2016) 513-538. [37] S.I. Sandler, Chemical, Biochemical and Engineering Thermodynamics, 4th ed. John Wiley & Sons, Inc., USA, 2006. [38] V. Kalikhman, D. Kost, I. Polishuk, About the physical validity of attaching the repulsive terms of analytical EOS models by temperature dependencies, Fluid Phase Equilib. 293(2010) 164-167. [39] M.A. Trebble, P.R. Bishnoi, Accuracy and consistency comparision of ten cubic equations of state for polar and non-polar compounds, Fluid Phase Equilib. 29(1986) 465-474. [40] G.G. Fuller, A modified Redlich-Kwong-Soave equation of state capable of representing the liquid state, Ind. Eng. Chem. Fundam. 15(1976) 254-257. [41] P.J. Linstrom, National institute of standard and technology, Standard Reference Database Number 69, http://webbook.nist.gov/chemistry/fluid/2005, Accessed date:3 August 2017. [42] D.W. Green, R.H. Perry, Perry's Chemical Engineer's Handbook, 8th ed. McGraw-Hill, New-York, 2007. [43] T.Y. Kwak, G.A. Mansoori, Van der Waals mixing rules for cubic equations of state. Applications for supercritical fluid extraction modelling, Chem. Eng. Sci. 41(1986) 1303-1309. [44] I. Wichterle, R. Kobayashi, Vapor-liquid equilibrium of methane-ethane system at low temperatures and high pressures, J. Chem. Eng. Data 17(1972) 9-12. [45] I. Wichterle, R. Kobayashi, Vapor-liquid equilibrium of methane-propane system at low temperatures and high pressures, J. Chem. Eng. Data 17(1972) 4-9. [46] L.C. Kahre, Low-temperature K data for methane-n-butane, J. Chem. Eng. Data 19(1974) 67-71. [47] H.M. Lin, H.M. Sebastian, J.J. Simnick, K.C. Chao, Gas-liquid equilibrium in binary mixtures of methane with n-decane, benzene, and toluene, J. Chem. Eng. Data 24(1979) 146-149. [48] S. Srivastan, N.A. Darwish, K.A.M. Gasem, R.L. Robinson Jr., Solubility of methane in hexane, decane, and dodecane at temperatures from 311 to 423 K and pressures to 10.4 MPa, J. Chem. Eng. Data 37(1992) 516-520. [49] N.A. Darwish, J. Fathikalajahi, K.A.M. Gasem, R.L. Robinson Jr., Solubility of methane in heavy normal paraffins at temperatures from 323 to 423 K and pressures to 10.7 MPa, J. Chem. Eng. Data 38(1993) 44-48. [50] C.J. Blanc, J.C.B. Setler, Vapor-liquid equilibria for the ethane-propane system at low temperature, J. Chem. Eng. Data 33(1988) 111-115. [51] V. Lhotak, I. Wichterle, Vapor-liquid equilibria in the ethane-n butane system at high pressures, Fluid Phase Equilib. 6(1981) 229-235. [52] K.A.M. Gasem, A.M. Raff, N. Darwish, R.L. Robinson Jr., Solubility of ethane in n-hexane at pressures to 5.4 MPa and temperatures from 311 to 394 K, J. Chem. Eng. Data 34(1989) 397-398. [53] H. Gardeler, K. Fischer, J. Gmehling, Experimental determination of vapor-liquid equilibrium data for asymmetric systems, Ind. Eng. Chem. Res. 41(2002) 1051-1056. [54] Y. Kayukawa, K. Fujii, Y. Higashi, Vapor-liquid equilibrium (VLE) properties for the binary systems propane (1) + n-butane (2) and propane (1) + isobutane (3), J. Chem. Eng. Data 50(2005) 579-582. [55] J.L. Guillevic, D. Richon, H. Renon, Vapor-liquid equilibrium measurements up to 558 K and 7 MPa:A new apparatus, Ind. Eng. Chem. Fundam. 22(1983) 495-499. [56] K.J. Lee, W.K. Chen, J.W. Ko, L.S. Lee, C.M.J. Chang, Isothermal vapor-liquid equilibria for binary mixtures of hexane, heptane, octane, nonane and cyclohexane at 333.15 K, 343.15 K and 353.15 K, J. Taiwan Inst. Chem. Eng. 40(2009) 573-579. [57] A. Dejoz, V. Gonzá Lez-Alfaro, P.J. Miguel, M.I. Va'zquez, Isobaric vapor-liquid equilibria for binary systems composed of octane, decane, and dodecane at 20 kPa, J. Chem. Eng. Data 41(1996) 93-96. [58] Q.N. Ho, K.S. Yoo, B.G. Lee, J.S. Lim, Measurement of vapor-liquid equilibria for the binary mixture of propylene (R-1270) + propane (R-290), Fluid Phase Equilib. 245(2006) 63-70. [59] S. Laugier, D. Richon, High-pressure vapor-liquid equilibria for ethylene +4-methyl-1-pentene and 1-butene +1-hexene, J. Chem. Eng. Data 41(1996) 282-284. [60] M.K.F. Malewsklt, S.I. Sandler, High-pressure vapor-liquid equilibria of the binary mixtures nitrogen 4-n-butane and argon + n-butane, J. Chem. Eng. Data 34(1989) 424-426. [61] L.A. Webster, A.J. Kidnay, Vapor-liquid equilibria for the methane-propane-carbon dioxide systems at 230 K and 270 K, J. Chem. Eng. Data 46(2001) 759-764. [62] J.H. Kim, M.S. Kim, Vapor-liquid equilibria for the carbon dioxide + propane system over a temperature range from 253.15 to 323.15 K, Fluid Phase Equilib. 238(2005) 13-19. [63] M.E. Pozo De Fernindez, J.A. Zollweg, W.B. Streett, Vapor-liquid EquiWrium in the binary system carbon dioxide 4-n-butane, J. Chem. Eng. Data 34(1989) 324-328. [64] Y.H. Li, K.H. Diilard, R.L. Robinson,, Vapor-liquid phase equilibrium for carbon dioxide-n-hexane at 40, 80, and 120℃ J. Chem. Eng. Data 26(1981) 53-55. [65] H. Kalra, H. Kubota, D.B. Robinson, H.J. Ng, Equilibrium phase properties of the carbon dioxide-n-heptane system, J. Chem. Eng. Data 23(1978) 317-321. [66] M.K. Gupta, Y.H. Li, B.J. Hulsey, R.L. Robinson Jr., Phase equilibrium for carbon dioxide-benzene at 313.2, 353.2, and 393.2 K, J. Chem. Eng. Data 27(1982) 55-57. [67] B. Yucelen, A.J. Kidnay, Vapor-liquid equilibria in the nitrogen + carbon dioxide + propane system from 240 to 330 K at pressures to 15 MPa, J. Chem. Eng. Data 44(1999) 926-931. [68] G. Silva-Oliver, G. Eliosa-Jimenez, F. Garcıa-Sanchez, J.R. Avendano-Gomezb, Highpressure vapor-liquid equilibria in the nitrogen-n-pentane system, Fluid Phase Equilib. 250(2006) 37-48. [69] G. Eliosa-Jimeneza, F. Garcia-Sancheza, G. Silva-Oliver, Vapor-liquid equilibrium data for the nitrogen + n-octane system from (344.5 to 543.5) K and at pressures up to 50 MPa, Fluid Phase Equilib. 282(2009) 3-10. [70] B.S. Gupta, M.J. Lee, Isobaric vapor-liquid equilibrium for the binary mixtures of nonane with cyclohexane, toluene, m-xylene, or p-xylene at 101.3 kPa, Fluid Phase Equilib. 313(2012) 190-195. [71] C. Diaz, J. Tojo, Phase equilibria behaviour of n-heptane with o-xylene, m-xylene, pxylene and ethylbenzene at 101.3 kPa, J. Chem. Thermodyn. 34(2002) 1975-1984. [72] K.J. Lee, W.K. Chen, L.S. Lee, C.M.J. Chang, J.W. Ko, Isothermal vapor-liquid equilibria for binary mixtures of benzene, toluene, m-xylene, and N-methylformamide at 333.15 K and 353.15 K, Fluid Phase Equilib. 280(2009) 42-48. [73] W.K. Chen, K.J. Lee, J.W. Ko, C.M.J. Chang, D. Hsiang, L.S. Lee, Vapor-liquid equilibria and density measurement for binary mixtures of toluene, benzene, o-xylene, m-xylene, sulfolane and nonane at 333.15 K and 353.15 K, Fluid Phase Equilib. 287(2010) 126-133. |