中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (6): 1374-1382.DOI: 10.1016/j.cjche.2019.01.012
• Special Issue: Separation Process Intensification of Chemical Engineering • 上一篇 下一篇
Yuqi Huang, Yuanbin Zhang, Huabin Xing
收稿日期:
2018-12-13
修回日期:
2019-01-11
出版日期:
2019-06-28
发布日期:
2019-08-19
通讯作者:
Huabin Xing
基金资助:
Yuqi Huang, Yuanbin Zhang, Huabin Xing
Received:
2018-12-13
Revised:
2019-01-11
Online:
2019-06-28
Published:
2019-08-19
Contact:
Huabin Xing
Supported by:
摘要: Light hydrocarbons (C1-C4) are fundamental raw materials in the petroleum and chemical industry. Separation and purification of structurally similar paraffin/olefin/alkyne mixtures are important for the production of highpurity or even polymer-grade light hydrocarbons. However, traditional methods such as cryogenic distillation and solvent absorption are energy-intensive and environmentally unfriendly processes. Ionic liquids (ILs) as a new alternative to organic solvents have been proposed as promising green media for light hydrocarbon separation due to their unique tunable structures and physicochemical properties resulting from the variations of the cations and anions such as low volatility, high thermal stability, large liquidus range, good miscibility with light hydrocarbons, excellent molecular recognition ability and adjustable hydrophylicity/hydrophobicity. In this review, the recent progresses on the light hydrocarbon separation using ILs are summarized, and some parameters of ILs that influence the separation performance are discussed.
Yuqi Huang, Yuanbin Zhang, Huabin Xing. Separation of light hydrocarbons with ionic liquids: A review[J]. 中国化学工程学报, 2019, 27(6): 1374-1382.
Yuqi Huang, Yuanbin Zhang, Huabin Xing. Separation of light hydrocarbons with ionic liquids: A review[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1374-1382.
[1] X.L. Cui, K.J. Chen, H.B. Xing, Q.W. Yang, R. Krishna, Z.B. Bao, H. Wu, W. Zhou, X.L. Dong, Y. Han, B. Li, Q.L. Ren, M.J. Zaworotko, B.L. Chen, Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene, Science 353(6295) (2016) 141-144. [2] P.Q. Liao, N.Y. Huang, W.X. Zhang, J.P. Zhang, X.M. Chen, Controlling guest conformation for efficient purification of butadiene, Science 356(6343) (2017) 1193-1196. [3] Z.B. Bao, G.G. Chang, X.B. Xing, R. Krishna, Q.L. Ren, B.L. Chen, Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures, Energy Environ. Sci. 9(2016) 3612-3641. [4] E.D. Bloch, W.L. Queen, R. Krishna, J.M. Zadrozny, C.M. Brown, J.R. Long, Hydrocarbon separations in a metal-organic framework with open iron(Ⅱ) coordination sites, Science 335(6076) (2012) 1606-1610. [5] R.B. Eldridge, Olefin/paraffin separation technology:A review, Ind. Eng. Chem. Res. 32(10) (1993) 2208-2212. [6] Z.G. Lei, C.Y. Li, B.H. Chen, Extractive distillation:A review, Sep. Purif. Rev. 32(2) (2003) 121-213. [7] X. Tian, X.P. Zhang, L. W, S.J. Zheng, L. Huang, S.J. Zhang, Multi-scale simulation of the 1,3-butadiene extraction separation process with an ionic liquid additive, Green Chem. 12(2010) 1263-1273. [8] X.J. Yang, Y. Xuan, P.K. Ouyang, Simulation of 1,3-butadiene production process by dimethylfomamide extractive distillation, Chin. J. Chem. Eng. 17(1) (2009) 27-35. [9] Y.F. Cao, L.W. Ge, X.Y. Dong, Q.W. Yang, Z.B. Bao, H.B. Xing, Q.L. Ren, Separation of hydrophobic compounds differing in a monounsaturated double bond using hydrophilic ionic liquid/water mixtures as extractants, ACS Sustain. Chem. Eng. 6(2) (2018) 2379-2385. [10] S.J. Zhang, N. Sun, X.Z. He, X.M. Lu, X.P. Zhang, Physical properties of ionic liquids:Database and evaluation, J. Phys. Chem. Ref. Data 35(4) (2006) 1475-1517. [11] H.B. Xing, X. Zhao, Q.W. Yang, B.G. Su, Z.B. Bao, Y.W. Yang, Q.L. Ren, Molecular dynamics simulation study on the absorption of ethylene and acetylene in ionic liquids, Ind. Eng. Chem. Res. 52(26) (2013) 9308-9316. [12] R. Hayes, G.G. Warr, R. Atkin, Structure and nanostructure in ionic liquids, Chem. Rev. 115(13) (2015) 6357-6426. [13] K. Huang, X.M. Zhang, Y.X. Li, Y.T. Wu, X.B. Hu, Facilitated separation of CO2 and SO2 through supported liquid membranes using carboxylate-based ionic liquids, J. Membr. Sci. 471(2014) 227-236. [14] Z.G. Lei, C.N. Dai, B.H. Chen, Gas solubility in ionic liquids, Chem. Rev. 114(2) (2014) 1289-1326. [15] M. Moura, C.C. Santini, M.F. Costa Gomes, Gaseous hydrocarbon separations using functionalized ionic liquids, Oil Gas Sci. Technol. 71(23) (2016) 1-11. [16] X.P. Zhang, X.C. Zhang, H.F. Dong, Z.J. Zhao, S.J. Zhang, Y. Huang, Carbon capture with ionic liquids:Overview and progress, Energy Environ. Sci. 5(2012) 6668-6681. [17] S. Riaño, K. Binnemans, Extraction and separation of neodymium and dysprosium from used NdFeB magnets:An application of ionic liquids in solvent extraction towards the recycling of magnets, Green Chem. 17(2015) 2931-2942. [18] A. Rout, K. Binnemans, Separation of rare earths from transition metals by liquid-liquid extraction from a molten salt hydrate to an ionic liquid phase, Dalton Trans. 43(2014) 3186-3195. [19] L. Qin, J.N. Zhang, H.Y. Cheng, L.F. Chen, Z.W. Qi, W.K. Yuan, Selection of imidazolium-based ionic liquids for vitamin E extraction from deodorizer distillate, ACS Sustain. Chem. Eng. 4(2) (2016) 583-590. [20] W. Jiang, W.S. Zhu, H.P. Li, X. Wang, S. Yin, Y.H. Chang, H.M. Li, Temperatureresponsive ionic liquid extraction and separation of the aromatic sulfur compounds, Fuel 140(2015) 590-596. [21] X.X. Liu, Q.W. Yang, Z.B. Bao, B.G. Su, Z.G. Zhang, Q.L. Ren, Y.W. Yang, H.B. Xing, Nonaqueous lyotropic ionic liquid crystals:preparation, characterization, and application in extraction, Chem. Eur. J. 21(25) (2015) 9150-9156. [22] R.S. Liang, Z.B. Bao, B.G. Su, H.B. Xing, Q.W. Yang, Y.W. Yang, Q.L. Ren, Feasibility of ionic liquids as extractants for selective separation of vitamin D3 and tachysterol3 by solvent extraction, J. Agric. Food Chem. 61(14) (2013) 3479-3487. [23] W.B. Jin, Q.W. Yang, Z.G. Zhang, Z.B. Bao, Q.L. Ren, Y.W. Yang, H.B. Xing, Selfassembly induced solubilization of drug-like molecules in nanostructured ionic liquids, Chem. Commun. 51(67) (2015) 13170-13173. [24] X. Zhao, H.B. Xing, Q.W. Yang, R.L. Li, B.G. Su, Z.B. Bao, Y.W. Yang, Q.L. Ren, Differential solubility of ethylene and acetylene in room-temperature ionic liquids:A theoretical study, J. Phys. Chem. B 116(13) (2012) 3944-3953. [25] C. Cadena, J.L. Anthony, J.K. Shah, T.I. Morrow, J.F. Brennecke, E.J. Maginn, Why is CO2 so soluble in imidazolium-based ionic liquids, J. Am. Chem. Soc. 126(16) (2004) 5300-5308. [26] H. Weingärtner, Understanding ionic liquids at the molecular level:Facts, problems, and controversies, Angew. Chem. Int. Ed. 47(4) (2008) 654-670. [27] Y. Zhang, X. Zhao, Q.W. Yang, Z.G. Zhang, Q.L. Ren, H.B. Xing, Long-chain carboxylate ionic liquids combining high solubility and low viscosity for light hydrocarbon separations, Ind. Eng. Chem. Res. 56(25) (2017) 7336-7344. [28] L. Moura, W. Darwich, C.C. Santini, M.F. Costa Gomes, Imidazolium-based ionic liquids with cyano groups for the selective absorption of ethane and ethylene, Chem. Eng. J. 280(2015) 755-762. [29] B.D. Green, R.A. O'Brien, J.H. Davis Jr., K.N. West, Ethane and ethylene solubility in an imidazolium-based lipidic ionic liquid, Ind. Eng. Chem. Res. 54(18) (2015) 5165-5171. [30] X.B. Xing, X. Zhao, R.L. Li, Q.W. Yang, B.G. Su, Z.B. Bao, Y.W. Yang, Q.L. Ren, Improved efficiency of ethylene/ethane separation using a symmetrical dual nitrilefunctionalized ionic liquid, ACS Sustainable Chem. Eng. 1(11) (2013) 1357-1363. [31] V. Mokrushin, D. Assenbaum, N. Paape, D. Gerhard, L. Mokrushina, P. Wasserscheid, W. Arlt, H. Kistenmacher, S. Neuendorf, V. Göke, Ionic liquids for propene-propane separation, Chem. Eng. Technol. 33(1) (2010) 63-73. [32] X. Zhao, Q.W. Yang, D. Xu, Z.B. Bao, Y. Zhang, B.G. Su, Q.L. Ren, H.B. Xing, Design and screening of ionic liquids for C2H2/C2H4 separation by COSMO-RS and experiments, AIChE J. 61(6) (2015) 2016-2027. [33] J. Palgunadi, H.K. Kim, J.M. Lee, S. Jung, Ionic liquids for acetylene and ethylene separation:material selection and solubility investigation, Chem. Eng. Process. 49(2) (2010) 192-198. [34] J.W. Wang, D.Y. Xie, Z.G. Zhang, Q.W. Yang, H.B. Xing, Y.W. Yang, Q.L. Ren, Z.B. Bao, Efficient adsorption separation of acetylene and ethylene via supported ionic liquid on metal-organic framework, AIChE J. 63(6) (2017) 2165-2175. [35] J.L. Anthony, J.L. Anderson, E.J. Maginn, J.F. Brennecke, Anion effects on gas solubility in ionic liquids, J. Phys. Chem. B 109(13) (2005) 6366-6374. [36] C.M. Wang, X.Y. Luo, H.M. Luo, D.E. Jiang, H.R. Li, S. Dai, Tuning the basicity of ionic liquids for equimolar CO2 capture, Angew. Chem. Int. Ed. 50(21) (2011) 4918-4922. [37] W.J. Li, Z.F. Zhang, B.X. Han, S.Q. Hu, J.L. Song, Y. Xie, X.S. Zhou, Switching the basicity of ionic liquids by CO2, Green Chem. 10(11) (2008) 1142-1145. [38] J. Palgunadi, S.Y. Hong, J.K. Lee, H. Lee, S.D. Lee, M. Cheong, H.S. Kim, Correlation between hydrogen bond basicity and acetylene solubility in room temperature ionic liquids, J. Phys. Chem. B 115(5) (2011) 1067-1074. [39] M.S. Shannon, J.M. Tedstone, S.P.O. Danielsen, M.S. Hindman, A.C. Irvin, J.E. Bara, Free volume as the basis of gas solubility and selectivity in imidazolium-based ionic liquids, Ind. Eng. Chem. Res. 51(15) (2012) 5565-5576. [40] Z.J. Chen, J.M. Lee, Free volume model for the unexpected effect of C2-methylation on the properties of imidazolium ionic liquids, J. Phys. Chem. B 118(10) (2014) 2712-2718. [41] Y. Wang, T.T. Tsotsis, K. Jessen, Competitive sorption of methane/ethane mixtures on shale:Measurements and modeling, Ind. Eng. Chem. Res. 54(48) (2015) 12187-12195. [42] R.D. Vidic, S.L. Brantley, J.M. Vandenbossche, D. Yoxtheimer, J.D. Abad, Impact of shale gas development on regional water quality, Science 340(6134) (2013) 1235009. [43] A. Finotello, J.E. Bara, D. Camper, R.D. Noble, Room-temperature ionic liquids:temperature dependence of gas solubility selectivity, Ind. Eng. Chem. Res. 47(10) (2008) 3453-3459. [44] M.F. Costa Gomes, Low-pressure solubility and thermodynamics of solvation of carbon dioxide, ethane, and hydrogen in 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl)amide between temperatures of 283 K and 343 K, J. Chem. Eng. Data 52(2) (2007) 472-475. [45] Y.S. Kim, J.H. Jang, B.D. Lim, J.W. Kang, C.S. Lee, Solubility of mixed gases containing carbon dioxide in ionic liquids:Measurements and predictions, Fluid Phase Equilib. 256(1-2) (2007) 70-74. [46] S. Raeissi, C.J. Peters, High pressure phase behaviour of methane in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, Fluid Phase Equilib. 294(1-2) (2010) 67-71. [47] B.C. Lee, S.L. Outcalt, Solubilities of gases in the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, J. Chem. Eng. Data 51(3) (2006) 892-897. [48] X.Y. Liu, W. Afzal, J.M. Prausnitz, Solubilities of small hydrocarbons in tetrabutylphosphonium bis(2,4,4-trimethylpentyl) phosphinate and in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, Ind. Eng. Chem. Res. 52(42) (2013) 14975-14978. [49] X.Y. Liu, W. Afzal, G.R. Yu, M.G. He, J.M. Prausnitz, High solubilities of small hydrocarbons in trihexyl tetradecylphosphonium bis(2,4,4-trimethylpentyl) phosphinate, J. Phys. Chem. B 117(36) (2013) 10534-10539. [50] X.L. Liu, E. Ruiz, W. Afzal, V. Ferro, J. Palomar, J.M. Prausnitz, High solubilities for methane, ethane, ethylene, and propane in trimethyloctylphosphonium bis(2,4,4-trimethylpentyl) phosphinate ([P8111] [TMPP]), Ind. Eng. Chem. Res. 53(1) (2014) 363-368. [51] M. Althuluth, M.T. Mota-Martinez, A. Berrouk, M.C. Kroon, C.J. Peters, Removal of small hydrocarbons(ethane,propane,butane)fromnaturalgasstreamsusingtheionicliquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, J. Supercrit. Fluids 90(2014) 65-72. [52] J. Jacquemin, M.F. Costa Gomes, P. Husson, V. Majer, Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283K and 343K and at pressures close to atmospheric, J. Chem. Thermodyn. 38(4) (2006) 490-502. [53] D. Camper, C. Becker, C. Koval, R. Noble, Low pressure hydrocarbon solubility in room temperature ionic liquids containing imidazolium rings interpreted using regular solution theory, Ind. Eng. Chem. Res. 44(6) (2005) 1928-1933. [54] X.L. Liu, W. Afzal, J.M. Prausnitz, Unusual trend of viscosities and densities for four ionic liquids containing a tetraalkyl phosphonium cation and the anion bis(2,4,4-trimethylpentyl) phosphinate, J. Chem. Thermodyn. 70(2014) 122-126. [55] D. Camper, C. Becker, C. Koval, R. Noble, Diffusion and solubility measurements in room temperature ionic liquids, Ind. Eng. Chem. Res. 45(1) (2006) 445-450. [56] J.L. Anthony, E.J. Maginn, J.F. Brennecke, Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate, J. Phys. Chem. B 106(29) (2002) 7315-7320. [57] F. Agel, F. Pitsch, F.F. Krull, P. Schulz, M. Wessling, T. Melin, P. Wasserscheid, Ionic liquid silver salt complexes for propene/propane separation, Phys. Chem. Chem. Phys. 13(2) (2011) 725-731. [58] A. Ortiz, L.M. Galán, D. Gorri, A.B. Haan, I. Ortiz, Reactive ionic liquid media for the separation of propylene/propane gaseous mixtures, Ind. Eng. Chem. Res. 49(16) (2010) 7227-7233. [59] L. Moura, M. Mishra, V. Bernales, P. Fuentealba, A.A.H. Padua, C.C. Santini, M.F. Costa Gomes, Effect of unsaturation on the absorption of ethane and ethylene in imidazolium-based ionic liquids, J. Phys. Chem. B 117(24) (2013) 7416-7425. [60] J.L. Anderson, J.K. Dixon, J.F. Brennecke, Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide:comparison to other ionic liquids, Acc. Chem. Res. 40(11) (2007) 1208-1216. [61] R.L. Li, H.B. Xing, Q.W. Yang, X. Zhao, B.G. Su, Z.B. Bao, Y.W. Yang, Q.L. Ren, Selective extraction of 1-hexene against n-hexane in ionic liquids with or without silver salt, Ind. Eng. Chem. Res. 51(25) (2012) 8588-8597. [62] J. Zhang, Q.H. Zhang, B.T. Qiao, Y.Q. Deng, Solubilities of the gaseous and liquid solutes and their thermodynamics of solubilization in the novel room-temperature ionic liquids at infinite dilution by gas chromatography, J. Chem. Eng. Data 52(6) (2007) 2277-2283. [63] U. Domańska, M. Królikowska, W.E. Acree Jr., G.A. Baker, Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate, J. Chem. Thermodyn. 43(7) (2011) 1050-1057. [64] M. Fallanza, A. Ortiz, D. Gorri, I. Ortiz, Propylene and propane solubility in imidazolium, pyridinium, and tetralkylammonium based ionic liquids containing a silver salt, J. Chem. Eng. Data 58(8) (2013) 2147-2153. [65] M. Fallanza, M. González-Miquel, E. Ruiz, A. Ortiz, D. Gorri, J. Palomar, I. Ortiz, Screening of RTILs for propane/propylene separation using COSMO-RS methodology, Chem. Eng. J. 220(2013) 284-293. [66] A. Ortiz, A. Ruiz, D. Gorri, I. Ortiz, Room temperature ionic liquid with silver salt as efficient reaction media for propylene/propane separation:absorption equilibrium, Sep. Purif. Technol. 63(2) (2008) 311-318. [67] E. Yashima, T. Matsushima, Y. Okamoto, Chirality assignment of amines and amino alcohols based on circular dichroism induced by helix formation of a stereoregular poly((4-carboxyphenyl)acetylene) through acid-base complexation, J. Am. Chem. Soc. 119(27) (1997) 6345-6359. [68] F. Silvestri, A. Marrocchi, Acetylene-based materials in organic photovoltaics, Int. J. Mol. Sci. 11(4) (2010) 1471-1508. [69] S. Jung, J. Palgunadi, J.H. Kim, H. Lee, B.S. Ahn, M. Cheong, H.S. Kim, Highly efficient metal-free membranes for the separation of acetylene/olefin mixtures:pyrrolidinium-based ionic liquids as acetylene transport carriers, J. Membr. Sci. 354(1-2) (2010) 63-67. [70] Y. Fukaya, K. Hayashi, M. Wada, H. Ohno, Cellulose dissolution with polar ionic liquids under mild conditions:Required factors for anions, Green Chem. 10(1) (2008) 44-46. [71] S. Coleman, R. Byrne, S. Minkovska, D. Diamond, Thermal reversion of spirooxazine in ionic liquids containing the[NTf2]-anion, Phys. Chem. Chem. Phys. 11(27) (2009) 5608-5614. [72] H. Ohno, Y. Fukaya, Task specific ionic liquids for cellulose technology, Chem. Lett. 38(1) (2009) 2-7. [73] C.G. Adam, M.V. Bravo, P.M.E. Mancini, G.G. Fortunato, Solvatochromic dipolarity micro-sensor behaviour in binary solvent systems of the (water + ionic liquid) type:Application of preferential solvation model and linear solvation energy relationships, J. Phys. Org. Chem. 27(11) (2014) 841-849. [74] M.J. Kamlet, J.L.M. Abboud, M.H. Abraham, R.W. Taft, A comprehensive collection of the solvatochromic parameters, π*, α, and β, and some methods for simplifying the generalized solvatochromic equation, J. Org. Chem. 48(1983) 2877-2887. [75] D. Xu, Q.W. Yang, B.G. Su, Z.B. Bao, Q.L. Ren, H.B. Xing, Enhancing the basicity of ionic liquids by tuning the cation-anion interaction strength and via the anion-tethered strategy, J. Phys. Chem. B 118(4) (2014) 1071-1079. [76] Q.W. Yang, X. Dan, J.Z. Zhang, Y.M. Yao, Z.G. Zhang, C. Qian, Q.L. Ren, H.B. Xing, Longchain fatty acid-based Phosphonium ionic liquids with strong hydrogen-bond basicity and good lipophilicity:synthesis, characterization, and application in extraction, ACS Sustain. Chem. Eng. 3(2) (2015) 309-316. [77] D. Morgan, L. Ferguson, P. Scovazzo, Diffusivities of gases in room-temperature ionic liquids:data and correlations obtained using a lag-time technique, Ind. Eng. Chem. Res. 44(13) (2005) 4815-4823. [78] L. Ferguson, P. Scovazzo, Solubility, diffusivity, and permeability of gases in phosphonium-based room temperature ionic liquids:Data and correlations, Ind. Eng. Chem. Res. 46(4) (2007) 1369-1374. [79] P.K. Kilaru, R.A. Condemarin, P. Scovazzo, Correlations of low-pressure carbon dioxide and hydrocarbon solubilities in imidazolium-, phosphonium-, and ammoniumbased room-temperature ionic liquids. Part 1. Using surface tension, Ind. Eng. Chem. Res. 47(3) (2008) 900-909. [80] P.K. Kilaru, P. Scovazzo, Correlations of low-pressure carbon dioxide and hydrocarbon solubilities in imidazolium-, phosphonium-, and ammonium-based roomtemperature ionic liquids. Part 2. Using activation energy of viscosity, Ind. Eng. Chem. Res. 47(3) (2008) 910-919. [81] R. Condemarin, P. Scovazzo, Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium RTIL data, Chem. Eng. J. 147(1) (2009) 51-57. [82] Y.Q. Huang, T. Ke, Y.Q. Ke, Q.L. Ren, Q.W. Yang, H.B. Xing, Carboxylate ionic liquids with large free volume and strong hydrogen bonding basicity for efficient separation of butadiene and n-Butene, Ind. Eng. Chem. Res. 57(40) (2018) 13519-13527. [83] L.A. Blanchard, Z.Y. Gu, J.F. Brennecke, High-pressure phase behavior of ionic liquid/CO2 systems, J. Phys. Chem. B 105(12) (2001) 2437-2444. [84] B.R. Prasad, S. Senapati, Explaining the differential solubility of flue gas components in ionic liquids from first-principle calculations, J. Phys. Chem. B 113(14) (2009) 4739-4743. [85] Z.J. Chen, T. Xue, J.M. Lee, What causes the low viscosity of ether-functionalized ionic liquids? Its dependence on the increase of free volume, RSC Adv. 2(28) (2012) 10564-10574. [86] Y.F. Hu, Z.C. Liu, C.M. Xu, X.M. Zhang, The molecular characteristics dominating the solubility of gases in ionic liquids, Chem. Soc. Rev. 40(2011) 3802-3823. |
[1] | Jingzhou Guo, Yuanzuo Zou, Bo Shi, Yuan Pu, Jiexin Wang, Dan Wang, Jianfeng Chen. Experimental verification of nanonization enhanced solubility for poorly soluble optoelectronic molecules[J]. 中国化学工程学报, 2023, 60(8): 8-15. |
[2] | Xingjuan Liang, Dehua Xu, Zhengjuan Yan, Jingxu Yang, Xinlong Wang, Zhiye Zhang, Jingli Wu, Honggang Zhen. Solid-liquid phase equilibrium for the system ammonium polyphosphate-urea ammonium nitrate-potassium chloride-water at 273.2 K[J]. 中国化学工程学报, 2023, 60(8): 131-142. |
[3] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk[J]. 中国化学工程学报, 2023, 60(8): 143-154. |
[4] | Huiqi Wang, Jianpo Ren, Shihao Zhang, Jiayu Dai, Yue Niu, Ketao Shi, Qiuxiang Yin, Ling Zhou. Measurement and correlation of solubility of 9-fluorenone in 11 pure organic solvents from T = 283.15 to 323.15 K[J]. 中国化学工程学报, 2023, 60(8): 235-241. |
[5] | Wen Yu, Yiyang Bo, Yiling Luo, Xiyan Huang, Rixiang Zhang, Jiaheng Zhang. Enhancing effect of choline chloride-based deep eutectic solvents with polyols on the aqueous solubility of curcumin-insight from experiment and theoretical calculation[J]. 中国化学工程学报, 2023, 59(7): 160-168. |
[6] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid[J]. 中国化学工程学报, 2023, 59(7): 210-221. |
[7] | Chen Chen, Qiong Tang, Hong Xu, Mingxing Tang, Xuekuan Li, Lei Liu, Jinxiang Dong. Alkyl-tetralin base oils synthesized from coal-based chemicals and evaluation of their lubricating properties[J]. 中国化学工程学报, 2023, 58(6): 20-28. |
[8] | Yun-Zhang Liu, Lu-Yao Zhang, Dan He, Li-Zhen Chen, Zi-Shuai Xu, Jian-Long Wang. Solubility measurement, correlation and thermodynamic properties of 2, 3, 4-trichloro-1, 5-dinitrobenzene in fifteen mono-solvents at temperatures from 278.15 to 323.15 K[J]. 中国化学工程学报, 2023, 58(6): 224-233. |
[9] | Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure[J]. 中国化学工程学报, 2023, 58(6): 355-363. |
[10] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate[J]. 中国化学工程学报, 2023, 57(5): 1-9. |
[11] | Pengbao Lian, Lizhen Chen, Dan He, Guangyuan Zhang, Zishuai Xu, Jianlong Wang. Crystallization thermodynamics of 2,4(5)-dinitroimidazole in binary solvents[J]. 中国化学工程学报, 2023, 57(5): 173-182. |
[12] | Feng Pan, Sugang Ma, Yu Ge, Chuanlin Fan, Qingshan Zhu. Fluidization thermal decomposition of sodium fluosilicate[J]. 中国化学工程学报, 2023, 57(5): 329-337. |
[13] | Chengang Yang, Huaizhi Han, Quan Zhu, Xiangyuan Li. Cracking and buoyancy effect on hydrocarbon endothermic and heat transfer characteristics in rectangular mini-channel[J]. 中国化学工程学报, 2023, 56(4): 242-254. |
[14] | Wen Tian, Junyi Ji, Hongjiao Li, Changjun Liu, Lei Song, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Measurements of the effective mass transfer areas for the gas–liquid rotating packed bed[J]. 中国化学工程学报, 2023, 55(3): 13-19. |
[15] | Jialei Sha, Chenyi Liu, Zhihong Ma, Weizhong Zheng, Weizhen Sun, Ling Zhao. Understanding the interfacial behaviors of benzene alkylation with butene using chloroaluminate ionic liquid catalyst: A molecular dynamics simulation[J]. 中国化学工程学报, 2023, 54(2): 44-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||