中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (6): 1439-1448.DOI: 10.1016/j.cjche.2019.02.005
• Special Issue: Separation Process Intensification of Chemical Engineering • 上一篇 下一篇
Xiaoyu Hu, Diannan Lu
收稿日期:
2018-10-20
修回日期:
2019-01-27
出版日期:
2019-06-28
发布日期:
2019-08-19
通讯作者:
Diannan Lu
基金资助:
Xiaoyu Hu, Diannan Lu
Received:
2018-10-20
Revised:
2019-01-27
Online:
2019-06-28
Published:
2019-08-19
Contact:
Diannan Lu
Supported by:
摘要: With the development of manufacturing technology on the nanoscale, the precision of nano-devices is rapidly increasing with lower cost. Different from macroscale or microscale fluids, many specific phenomena and advantages are observed in nanofluidics. Devices and process involving and utilizing these phenomena play an important role in many fields in chemical engineering including separation, chemical analysis and transmission. In this article, we summarize the state-of-the-art progress in theoretical studies and manufacturing technologies on nanofluidics. Then we discuss practical applications of nanofluidics in many chemical engineering fields, especially in separation and encountering problems. Finally, we are looking forward to the future of nanofluidics and believe it will be more important in the separation process and the modern chemical industry.
Xiaoyu Hu, Diannan Lu. Intensification of chemical separation engineering by nanostructured channels and nanofluidics: From theories to applications[J]. 中国化学工程学报, 2019, 27(6): 1439-1448.
Xiaoyu Hu, Diannan Lu. Intensification of chemical separation engineering by nanostructured channels and nanofluidics: From theories to applications[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1439-1448.
[1] M. Rauscher, S. Dietrich, Wetting phenomena in nanofluidics, Annu. Rev. Mater. Res. 38(2008) 143-172. [2] J.C.T. Eijkel, A. van den Berg, Nanofluidics:What is it and what can we expect from it? Microfluid. Nanofluid. 1(2005) 249-267. [3] P. Abgrall, N.T. Nguyen, Nanofluidic devices and their applications, Anal. Chem. 80(2008) 2326-2341. [4] D. Mijatovic, J.C.T. Eijkel, A. van den Berg, Technologies for nanofluidic systems:Top-down vs. bottom-up-A review, Lab Chip 5(2005) 492-500. [5] J.L. Perry, S.G. Kandlikar, Review of fabrication of nanochannels for single phase liquid flow, Microfluid. Nanofluid. 2(2006) 185-193. [6] R.B. Schoch, J.Y. Han, P. Renaud, Transport phenomena in nanofluidics, Rev. Mod. Phys. 80(2008) 839-883. [7] Z. Yuan, A.L. Garcia, G.P. Lopez, D.N. Petsev, Electrokinetic transport and separations in fluidic nanochannels, Electrophoresis 28(2007) 595-610. [8] E.J.W. Verwey, Theory of the stability of lyophobic colloids, J. Phys. Colloid. Chem. 51(1947) 631-636. [9] J. Lyklema, H.P. van Leeuwen, M. Minor, DLVO-theory, a dynamic re-interpretation, Adv. Colloid Interf. Sci. 83(1999) 33-69. [10] B.V. Derjaguin, A.S. Titijevskaia, I.I. Abricossova, A.D. Malkina, Investigations of the forces of interaction of surfaces in different media and their application to the problem of colloid stability, Discuss. Faraday Soc. (1954) 24-41. [11] B.V. Derjaguin, Direct measurement of molecular attraction between solids separated by a narrow gap, Q. Rev. Chem. Soc. 10(1956) 295. [12] W.F. Heinz, J.H. Hoh, Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope, Trends Biotechnol. 17(1999) 143-150. [13] U. Raviv, S. Giasson, N. Kampf, J.F. Gohy, R. Jerome, J. Klein, Lubrication by charged polymers, Nature 425(2003) 163-165. [14] O.I. Vinogradova, Slippage of water over hydrophobic surfaces, Int. J. Miner. Process. 56(1999) 31-60. [15] W. Sparreboom, A. van den Berg, J.C. Eijkel, Transport in nanofluidic systems:a review of theory and applications, New J. Phys. 12(2010), 015004. [16] W. Sparreboom, A. van den Berg, J.C. Eijkel, Principles and applications of nanofluidic transport, Nat. Nanotechnol. 4(2009) 713. [17] B. Radha, A. Esfandiar, F.C. Wang, A.P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S.J. Haigh, I.V. Grigorieva, H.A. Wu, A.K. Geim, Molecular transport through capillaries made with atomic-scale precision, Nature 538(2016) 222. [18] N.R. Tas, P. Mela, T. Kramer, J.W. Berenschot, A. van den Berg, Capillarity induced negative pressure of water plugs in nanochannels, Nano Lett. 3(2003) 1537-1540. [19] Y.X. Zhu, S. Granick, Rate-dependent slip of Newtonian liquid at smooth surfaces, Phys. Rev. Lett. 87(2001). [20] P.G. de Gennes, On fluid/wall slippage, Langmuir 18(2002) 3413-3414. [21] J. Bico, C. Marzolin, D. Quere, Pearl drops, Europhys. Lett. 47(1999) 220-226. [22] S. Herminghaus, Roughness-induced non-wetting, Europhys. Lett. 52(2000) 165-170. [23] W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta 202(1997) 1-8. [24] L. Benthansen, B. Feldtrasmussen, A. Kverneland, T. Deckert, Plasma disappearance of glycated and non-glycated albumin in type-1(insulin-dependent) diabetesmellitus-Evidence for charge dependent alterations of the plasma to lymph pathway, Diabetologia 36(1993) 361-363. [25] M. Reshadi, M.H. Saidi, The role of ion partitioning in electrohydrodynamic characteristics of soft nanofluidics:Inclusion of EDL overlap and steric effects, Chem. Eng. Sci. 190(2018) 443-458. [26] E. Amani, S. Movahed, Hybrid continuum-atomistic approach to model electrokinetics in nanofluidics, Anal. Chim. Acta 923(2016) 33-44. [27] D.E. Clapham, Symmetry, selectivity, and the 2003 Nobel Prize, Cell 115(2003) 641-646. [28] S. Succi, A.A. Mohammad, J. Horbach, Lattice-Boltzmann simulation of dense nanoflows:A comparison with molecular dynamics and Navier-Stokes solutions, Int. J. Mod. Phys. C 18(2007) 667-675. [29] B.J. Alder, T.E. Wainwright, Studies in molecular dynamics. 1. General method, J. Chem. Phys. 31(1959) 459-466. [30] J.F. Zhang, B.D. Todd, K.P. Travis, Viscosity of confined inhomogeneous nonequilibrium fluids, J. Chem. Phys. 121(2004) 10778-10786. [31] R.M. Pashley, Hydration forces between mica surfaces in aqueous-electrolyte solutions, J. Colloid Interface Sci. 80(1981) 153-162. [32] R.M. Pashley, DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions-A correlation of double-layer and hydration forces with surface cation-exchange properties, J. Colloid Interface Sci. 83(1981) 531-546. [33] S.A. Somers, H.T. Davis, Microscopic dynamics of fluids confined between smooth and atomically structured solid surfaces, J. Chem. Phys. 96(1992) 5389-5407. [34] Y. Iwai, H. Uchida, Y. Koga, Y. Arai, Y. Mori, Monte Carlo simulation of solubilities of aromatic compounds in supercritical carbon dioxide by a group contribution site model, Ind. Eng. Chem. Res. 35(1996) 3782-3787. [35] D. Kim, E. Darve, Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels, Phys. Rev. E 73(2006) 051203. [36] J. Thomas, A. McGaughey, Density, distribution, and orientation of water molecules inside and outside carbon nanotubes, J. Chem. Phys. 128(2008) 084715. [37] A.E. Giannakopoulos, F. Sofos, T.E. Karakasidis, A. Liakopoulos, A quasi-continuum multi-scale theory for self-diffusion and fluid ordering in nanochannel flows, Microfluid. Nanofluid. 17(2014) 1011-1023. [38] R.M. Pashley, J.N. Israelachvili, DLVO and hydration forces between mica surfaces in Mg2+, Ca2+, Sr2+, and Ba2+ chloride solutions, J. Colloid Interface Sci. 97(1984) 446-455. [39] X. Huang, J. Wu, Y. Zhu, Y. Zhang, X. Feng, X. Lu, Flow-resistance analysis of nanoconfined fluids inspired from liquid nano-lubrication:A review, Chin. J. Chem. Eng. 25(2017) 1552-1562. [40] M. Whitby, N. Quirke, Fluid flow in carbon nanotubes and nanopipes, Nat. Nanotechnol. 2(2007) 87-94. [41] C. Cottin-Bizonne, B. Cross, A. Steinberger, E. Charlaix, Boundary slip on smooth hydrophobic surfaces:Intrinsic effects and possible artifacts, Phys. Rev. Lett. 94(2005) 056102. [42] L. Joly, C. Ybert, E. Trizac, L. Bocquet, Liquid friction on charged surfaces:From hydrodynamic slippage to electrokinetics, J. Chem. Phys. 125(2006) 204716. [43] C.I. Bouzigues, P. Tabeling, L. Bocquet, Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces, Phys. Rev. Lett. 101(2008) 114503. [44] J. Tao, X. Song, T. Zhao, S. Zhao, H. Liu, Confinement effect on water transport in CNT membranes, Chem. Eng. Sci. 192(2018) 1252-1259. [45] S. Zhao, Y. Hu, X. Yu, Y. Liu, Z.S. Bai, H. Liu, Surface wettability effect on fluid transport in nanoscale slit pores, AIChE J. 63(2017) 1704-1714. [46] W. Cao,L. Huang,M.Ma,L.Lu,X.Lu,Waterinnarrowcarbonnanotubes:Roughness promoted diffusion transition, J. Phys. Chem. C 122(2018) 19124-19132. [47] M.E. Fisher, Y. Levin, Criticality in ionic fluids:Debye-Hückel theory, Bjerrum, and beyond, Phys. Rev. Lett. 71(1993) 3826-3829. [48] G.M. Torrie, J.P. Valleau, Electrical double-layers. 1. Monte-Carlo study of a uniformly charged surface, J. Chem. Phys. 73(1980) 5807-5816. [49] A. Siria, P. Poncharal, A.L. Biance, R. Fulcrand, X. Blase, S.T. Purcell, L. Bocquet, Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature 494(2013) 455-458. [50] X. Kong, J. Jiang, D.N. Lu, Z. Liu, J.Z. Wu, Molecular theory for electrokinetic transport in pH-regulated nanochannels, J. Phys. Chem. Lett. 5(2014) 3015-3020. [51] F.H. Van der Heyden, D. Stein, K. Besteman, S.G. Lemay, C. Dekker, Charge inversion at high ionic strength studied by streaming currents, Phys. Rev. Lett. 96(2006) 224502. [52] Y. He, D. Gillespie, D. Boda, I. Vlassiouk, R.S. Eisenberg, Z.S. Siwy, Tuning transport properties of nanofluidic devices with local charge inversion, J. Am. Chem. Soc. 131(2009) 5194-5202. [53] X. Hu, X. Kong, D. Lu, J. Wu, A molecular theory for predicting the thermodynamic efficiency of electrokinetic energy conversion in slit nanochannels, J. Chem. Phys. 148(2018) 084701. [54] H. Löwen, Density functional theory of inhomogeneous classical fluids:Recent developments and new perspectives, J. Phys. Condens. Matter 14(2002) 11897. [55] R. Evans, The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids, Adv. Phys. 28(1979) 143-200. [56] J.F. Lutsko, Recent developments in classical density functional theory, Adv. Chem. Phys. 144(2010) 1-92. [57] Y.-X. Yu, J. Wu, G.-H. Gao, Density-functional theory of spherical electric double layers and ζ potentials of colloidal particles in restricted-primitive-model electrolyte solutions, J. Chem. Phys. 120(2004) 7223-7233. [58] J. Wu, T. Jiang, D.-e. Jiang, Z. Jin, D. Henderson, A classical density functional theory for interfacial layering of ionic liquids, Soft Matter 7(2011) 11222-11231. [59] Z. Li, J. Wu, Density-functional theory for the structures and thermodynamic properties of highly asymmetric electrolyte and neutral component mixtures, Phys. Rev. E 70(2004) 031109. [60] L. Blum, J. Høye, Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function, J. Phys. Chem. 81(1977) 1311-1316. [61] F.H.J. van der Heyden, D. Stein, C. Dekker, Streaming currents in a single nanofluidic channel, Phys. Rev. Lett. 95(2005) 116104. [62] L.H. Yeh, F. Chen, Y.T. Chiou, Y.S. Su, Anomalous pH-dependent nanofluidic salinity gradient power, Small 13(2017) 1702691. [63] R.E.G. vanHal, J.C.T. Eijkel, P. Bergveld, A general model to describe the electrostatic potential at electrolyte oxide interfaces, Adv. Colloid Interf. Sci. 69(1996) 31-62. [64] S.H. Behrens, D.I. Christl, R. Emmerzael, P. Schurtenberger, M. Borkovec, Charging and aggregation properties of carboxyl latex particles:Experiments versus DLVO theory, Langmuir 16(2000) 2566-2575. [65] M. Borkovec, B. Jönsson, G.J. Koper, Ionization processes and proton binding in polyprotic systems:Small molecules, proteins, interfaces, and polyelectrolytes, Surface and Colloid Science, Springer 2001, pp. 99-339. [66] G. Trefalt, I. Szilagyi, M. Borkovec, Poisson-Boltzmann description of interaction forces and aggregation rates involving charged colloidal particles in asymmetric electrolytes, J. Colloid Interface Sci. 406(2013) 111-120. [67] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320(2008) 390-400. [68] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci. 62(1991) 165-185. [69] B.W. Rowe, L.M. Robeson, B.D. Freeman, D.R. Paul, Influence of temperature on the upper bound:Theoretical considerations and comparison with experimental results, J. Membr. Sci. 360(2010) 58-69. [70] L.M. Robeson, Z.P. Smith, B.D. Freeman, D.R. Paul, Contributions of diffusion and solubility selectivity to the upper bound analysis for glassy gas separation membranes, J. Membr. Sci. 453(2014) 71-83. [71] A. Esfandiar, B. Radha, F.C. Wang, Q. Yang, S. Hu, S. Garaj, R.R. Nair, A.K. Geim, K. Gopinadhan, Size effect in ion transport through angstrom-scale slits, Science 358(2017) 511-513. [72] C. Duan, W. Wang, Q. Xie, Fabrication of nanofluidic devices, Biomicrofluidics 7(2013) 026501. [73] M. Haque, M. Saif, A review of MEMS-based microscale and nanoscale tensile and bending testing, Exp. Mech. 43(2003) 248-255. [74] K. Tybrandt, R. Forchheimer, M. Berggren, Logic gates based on ion transistors, Nat. Commun. 3(2012) 871. [75] E.O. Gabrielsson, K. Tybrandt, M. Berggren, Ion diode logics for pH control, Lab Chip 12(2012) 2507-2513. [76] J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Photonic crystals:Putting a new twist on light, Nature 386(1997) 143. [77] L. Zhang, F. Gu, L. Tong, X. Yin, Simple and cost-effective fabrication of twodimensional plastic nanochannels from silica nanowire templates, Microfluid. Nanofluid. 5(2008) 727-732. [78] A. Noy, H.G. Park, F. Fornasiero, J.K. Holt, C.P. Grigoropoulos, O. Bakajin, Nanofluidics in carbon nanotubes, Nano Today 2(2007) 22-29. [79] A. Hibara, T. Saito, H.-B. Kim, M. Tokeshi, T. Ooi, M. Nakao, T. Kitamori, Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements, Anal. Chem. 74(2002) 6170-6176. [80] J.M. Perry, K. Zhou, Z.D. Harms, S.C. Jacobson, Ion transport in nanofluidic funnels, ACS Nano 4(2010) 3897-3902. [81] A.A. Tseng, Recent developments in nanofabrication using focused ion beams, Small 1(2005) 924-939. [82] A.A. Tseng, Recent developments in micromilling using focused ion beam technology, J. Micromech. Microeng. 14(2004) R15. [83] L.J. Guo, Nanoimprint lithography:Methods and material requirements, Adv. Mater. 19(2007) 495-513. [84] Y. Cho, J. Park, H. Park, X. Cheng, B. Kim, A. Han, Fabrication of high-aspect-ratio polymer nanochannels using a novel Si nanoimprint mold and solvent-assisted sealing, Microfluid. Nanofluid. 9(2010) 163-170. [85] K.J. Freedman, M. Jurgens, A. Prabhu, C.W. Ahn, P. Jemth, J.B. Edel, M.J. Kim, Chemical, thermal, and electric field induced unfolding of single protein molecules studied using nanopores, Anal. Chem. 83(2011) 5137-5144. [86] A.T. Kuan, J.A. Golovchenko, Nanometer-thin solid-state nanopores by cold ion beam sculpting, Appl. Phys. Lett. 100(2012) 213104. [87] J. Li, D. Stein, C. McMullan, D. Branton, M.J. Aziz, J.A. Golovchenko, Ion-beam sculpting at nanometre length scales, Nature 412(2001) 166-169. [88] G. Trefalt, S.H. Behrens, M. Borkovec, Charge regulation in the electrical double layer:Ion adsorption and surface interactions, Langmuir 32(2015) 380-400. [89] M. Foquet, J. Korlach, W. Zipfel, W.W. Webb, H.G. Craighead, DNA fragment sizing by single molecule detection in submicrometer-sized closed fluidic channels, Anal. Chem. 74(2002) 1415-1422. [90] Y.M. Wang, J.O. Tegenfeldt, W. Reisner, R. Riehn, X.J. Guan, L. Guo, I. Golding, E.C. Cox, J. Sturm, R.H. Austin, Single-molecule studies of repressor-DNA interactions show long-range interactions, Proc. Natl. Acad. Sci. U. S. A. 102(2005) 9796-9801. [91] P.M. Sinha, G. Valco, S. Sharma, X.W. Liu, M. Ferrari, Nanoengineered device for drug delivery application, Nanotechnology 15(2004) S585-S589. [92] H. Daiguji, P.D. Yang, A.J. Szeri, A. Majumdar, Electrochemomechanical energy conversion in nanofluidic channels, Nano Lett. 4(2004) 2315-2321. [93] H. Daiguji, Y. Oka, T. Adachi, K. Shirono, Theoretical study on the efficiency of nanofluidic batteries, Electrochem. Commun. 8(2006) 1796-1800. [94] Z. Jia, B. Wang, S. Song, Y. Fan, Blue energy:Current technologies for sustainable power generation from water salinity gradient, Renew. Sust. Energ. Rev. 31(2014) 91-100. [95] J.W. Post, H.V.M. Hamelers, C.J.N. Buisman, Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system, Environ. Sci. Technol. 42(2008) 5785-5790. [96] J. Chen, J. Yang, Z.L. Li, X. Fan, Y.L. Zi, Q.S. Jing, H.Y. Guo, Z. Wen, K.C. Pradel, S.M. Niu, Z.L. Wang, Networks of triboelectric nanogenerators for harvesting water wave energy:A potential approach toward blue energy, ACS Nano 9(2015) 3324-3331. [97] Y.Q. Ren, D. Stein, Slip-enhanced electrokinetic energy conversion in nanofluidic channels, Nanotechnology 19(2008) 195707. [98] C.S. Lee, W.C. Blanchard, C.T. Wu, Direct control of the electroosmosis in capillary zone electrophoresis by using an external electric-field, Anal. Chem. 62(1990) 1550-1552. [99] R.B.M. Schasfoort, S. Schlautmann, L. Hendrikse, A. van den Berg, Field-effect flow control for microfabricated fluidic networks, Science 286(1999) 942-945. [100] R. Fan, M. Yue, R. Karnik, A. Majumdar, P.D. Yang,Polarity switching and transient responses in single nanotube nanofluidic transistors, Phys. Rev. Lett. 95(2005) 086607. [101] R. Karnik, K. Castelino, R. Fan, P. Yang, A. Majumdar, Effects of biological reactions and modifications on conductance of nanofluidic channels, Nano Lett. 5(2005) 1638-1642. [102] Y. Ji, W. Qian, Y. Yu, Q. An, L. Liu, Y. Zhou, C. Gao, Recent developments in nanofiltration membranes based on nanomaterials, Chin. J. Chem. Eng. 25(2017) 1639-1652. [103] Y. Liu, Beyond graphene oxides:Emerging 2D molecular sieve membranes for efficient separation, Chin. J. Chem. Eng. 27(6) (2019) 1257-1271. [104] L. Rems, D. Kawale, L.J. Lee, P.E. Boukany, Flow of DNA in micro/nanofluidics:From fundamentals to applications, Biomicrofluidics 10(2016) 043403. [105] C. Ho, R. Qiao, J.B. Heng, A. Chatterjee, R.J. Timp, N.R. Aluru, G. Timp, Electrolytic transport through a synthetic nanometer-diameter pore, Proc. Natl. Acad. Sci. U. S. A. 102(2005) 10445-10450. [106] M.T. Blom, E. Chmela, R.E. Oosterbroek, R. Tijssen,A. Van Den Berg, On-chip hydrodynamic chromatography separation and detection of nanoparticles and biomolecules, Anal. Chem. 75(2003) 6761-6768. [107] D. Stein, F.H. van der Heyden, W.J. Koopmans, C. Dekker, Pressure-driven transport of confined DNA polymers in fluidic channels, Proc. Natl. Acad. Sci. 103(2006) 15853-15858. [108] J. Fu, R.B. Schoch, A.L. Stevens, S.R. Tannenbaum, J. Han, A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins, Nat. Nanotechnol. 2(2007) 121. [109] J. Han, H.G. Craighead, Separation of long DNA molecules in a microfabricated entropic trap array, Science 288(2000) 1026-1029. [110] X.Y. Wang, V. Veerappan, C. Cheng, X. Jiang, R.D. Allen, P.K. Dasgupta, S.R. Liu, Free solution hydrodynamic separation of DNA fragments from 75 to 106000 base pairs in a single run, J. Am. Chem. Soc. 132(2010) 40-41. [111] K.D. Dorfman, S.B. King, D.W. Olson, J.D.P. Thomas, D.R. Tree, Beyond gel electrophoresis:Microfluidic separations, fluorescence burst analysis, and DNA stretching, Chem. Rev. 113(2013) 2584-2667. [112] X. Wang, M. Li, Y. Chen, R. Cheng, S. Huang, L. Pan, Z. Sun, Electrosorption of NaCl solutions with carbon nanotubes and nanofibers composite film electrodes, Electrochem. Solid-State Lett. 9(2006) E23-E26. [113] S. Pennathur, F. Baldessari, J.G. Santiago, M.G. Kattah, J.B. Steinman, P.J. Utz, Freesolution oligonucleotide separation in nanoscale channels, Anal. Chem. 79(2007) 8316-8322. [114] J.O. Tegenfeldt, C. Prinz, H. Cao, R.L. Huang, R.H. Austin, S.Y. Chou, E.C. Cox, J.C. Sturm, Micro-and nanofluidics for DNA analysis, Anal. Bioanal. Chem. 378(2004) 1678-1692. [115] L.R. Huang, E.C. Cox, R.H. Austin, J.C. Sturm, Continuous particle separation through deterministic lateral displacement, Science 304(2004) 987-990. [116] R.B. Schoch, P. Renaud, Ion transport through nanoslits dominated by the effective surface charge, Appl. Phys. Lett. 86(2005) 253111. [117] L. Chen, G.S. Shi, J. Shen, B.Q. Peng, B.W. Zhang, Y.Z. Wang, F.G. Bian, J.J. Wang, D.Y. Li, Z. Qian, G. Xu, G.P. Liu, J.R. Zeng, L.J. Zhang, Y.Z. Yang, G.Q. Zhou, M.H. Wu, W.Q. Jin, J.Y. Li, H.P. Fang, Ion sieving in graphene oxide membranes via cationic control of interlayer spacing, Nature 550(2017) 415-418. [118] Q. Yang, Y. Su, C. Chi, C.T. Cherian, K. Huang, V.G. Kravets, F.C. Wang, J.C. Zhang, A. Pratt, A.N. Grigorenko, F. Guinea, A.K. Geim, R.R. Nair, Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation, Nat. Mater. 16(2017) 1198. [119] S. Homaeigohar, M. Elbahri, Graphene membranes for water desalination, NPG Asia Mater. 9(2017) e427. [120] J. Zhao, Z.Y. Wang, J.C. White, B.S. Xing, Graphene in the aquatic environment:Adsorption, dispersion, toxicity and transformation, Environ. Sci. Technol. 48(2014) 9995-10009. [121] A. Morelos-Gomez, R. Cruz-Silva, H. Muramatsu, J. Ortiz-Medina, T. Araki, T. Fukuyo, S. Tejima, K. Takeuchi, T. Hayashi, M. Terrones, M. Endo, Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes, Nat. Nanotechnol. 12(2017) 1083. [122] W.W.L. Xu, C. Fang, F.L. Zhou, Z.N. Song, Q.L. Liu, R. Qiao, M. Yu, Self-assembly:A facile way of forming ultrathin, high-performance graphene oxide membranes for water purification, Nano Lett. 17(2017) 2928-2933. [123] J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh, I.V. Grigorieva, P. Carbone, A.K. Geim, R.R. Nair, Tunable sieving of ions using graphene oxide membranes, Nat. Nanotechnol. 12(2017) 546. [124] Z.K. Zheng, R. Grunker, X.L. Feng, Synthetic two-dimensional materials:A new paradigm of membranes for ultimate separation, Adv. Mater. 28(2016) 6529-6545. [125] J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science 312(2006) 1034-1037. [126] D. Wang, Z. Wang, L. Wang, L. Hu, J. Jin, Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation, Nanoscale 7(2015) 17649-17652. [127] D. Chen, W. Ying, Y. Guo, Y. Ying, X. Peng, Enhanced gas separation through nanoconfined ionic liquidin laminated MoS2 membrane, ACS Appl. Mater. Interfaces 9(2017) 44251-44257. [128] K.V. Agrawal, B. Topuz, T.C.T. Pham, T.H. Nguyen, N. Sauer, N. Rangnekar, H. Zhang, K. Narasimharao, S.N. Basahel, L.F. Francis, Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers, Adv. Mater. 27(2015) 3243-3249. [129] Y. Peng, Y. Li, Y. Ban, H. Jin, W. Jiao, X. Liu, W. Yang, Metal-organic framework nanosheets as building blocks for molecular sieving membranes, Science 346(2014) 1356-1359. [130] L. Ding, Y. Wei, L. Li, T. Zhang, H. Wang, J. Xue, L.-X. Ding, S. Wang, J. Caro, Y. Gogotsi, MXene molecular sieving membranes for highly efficient gas separation, Nat. Commun. 9(2018) 155. |
[1] | Huan-Huan Yin, Yin-Lei Han, Xiao Yan, Yi-Xin Guan. Proanthocyanidins prevent tau protein aggregation and disintegrate tau filaments[J]. 中国化学工程学报, 2023, 57(5): 63-71. |
[2] | Qiaoqiao Liu, Guihong Lin, Jian Zhou, Liangliang Huang, Chang Liu. Hydrogen-bond mediated and concentrate-dependent NaHCO3 crystal morphology in NaHCO3–Na2CO3 aqueous solution: Experiments and computer simulations[J]. 中国化学工程学报, 2023, 55(3): 49-58. |
[3] | Baodong Zhao, Yinglei Wang, Fulei Gao, Yajing Liu, Weixiao Liu, Feng Ding. Understanding the alkyl effect of geminal dinitropropyl ester energetic plasticizers on hydroxyl terminated polybutadiene (HTPB): Simultaneous tuning on low temperature behavior and processability[J]. 中国化学工程学报, 2023, 54(2): 364-371. |
[4] | Peng Yang, Shengzhe Jia, Yan Wang, Zongqiu Li, Songgu Wu, Jingkang Wang, Junbo Gong. Dissolution behavior, thermodynamic and kinetic analysis of malonamide by experimental measurement and molecular simulation[J]. 中国化学工程学报, 2023, 53(1): 260-269. |
[5] | Hojatollah Moradi, Hedayat Azizpour, Hossein Bahmanyar, Mohammad Emamian. Molecular dynamic simulation of carbon dioxide, methane, and nitrogen adsorption on Faujasite zeolite[J]. 中国化学工程学报, 2022, 43(3): 70-76. |
[6] | Tongan Yan, Minman Tong, Qingyuan Yang, Dahuan Liu, Yandong Guo, Chongli Zhong. Large-scale simulations of CO2 diffusion in metal-organic frameworks with open Cu sites[J]. 中国化学工程学报, 2022, 42(2): 1-9. |
[7] | Puxu Liu, Yong Wang, Yang Chen, Xiaoqing Wang, Jiangfeng Yang, Libo Li, Jinping Li. Stable titanium metal-organic framework with strong binding affinity for ethane removal[J]. 中国化学工程学报, 2022, 42(2): 35-41. |
[8] | Tongan Yan, Dahuan Liu, Qingyuan Yang, Chongli Zhong. Screening and design of COF-based mixed-matrix membrane for CH4/N2 separation[J]. 中国化学工程学报, 2022, 42(2): 170-177. |
[9] | Jule Ma, Peiwen Xiao, Pingmei Wang, Xue Han, Jianhui Luo, Ruifang Shi, Xuan Wang, Xianyu Song, Shuangliang Zhao. Molecular dynamics simulation study on π-π stacking of Gemini surfactants in oil/water systems[J]. 中国化学工程学报, 2022, 50(10): 335-346. |
[10] | Zhaoyang Yu, Jing Li, Xianren Zhang. A new hypothesis for cavitation nucleation in gas saturated solutions: Clustering of gas molecules lowers significantly the surface tension[J]. 中国化学工程学报, 2022, 50(10): 347-351. |
[11] | Yumeng Zhang, Yingying Zhang, Xueling Pan, Yao Qin, Jiawei Deng, Shanshan Wang, Qingwei Gao, Yudan Zhu, Zhuhong Yang, Xiaohua Lu. Molecular insights on Ca2+/Na+ separation via graphene-based nanopores: The role of electrostatic interactions to ionic dehydration[J]. 中国化学工程学报, 2022, 41(1): 220-229. |
[12] | Zilong Liu, Ge Zhao, Xiao Zhang, Lei Gao, Junqing Chen, Weichao Sun, Guanggang Zhou, Guiwu Lu. Superior performance porous carbon nitride nanosheets for helium separation from natural gas: Insights from MD and DFT simulations[J]. 中国化学工程学报, 2021, 37(9): 46-53. |
[13] | Xia Chen, Yan Wang, Lianying Wu, Weitao Zhang, Yangdong Hu. Testing and validation of a self-diffusion coefficient model based on molecular dynamics simulations[J]. 中国化学工程学报, 2021, 36(8): 138-145. |
[14] | Mingming Zhai, Tomohisa Yoshioka, Jianhua Yang, Jinqu Wang, Dinglin Zhang, Jinming Lu, Yan Zhang. Molecular dynamics simulation of small gas molecule permeation through CAU-1 membrane[J]. 中国化学工程学报, 2021, 33(5): 104-111. |
[15] | Weichen Zhu, Yuxuan He, Minman Tong, Xiaoyong Lai, Shijia Liang, Xu Wang, Yanjuan Li, Xiao Yan. Exploring the methods on improving CH4 delivery performance to surpass the Advanced Research Project Ageney-Energy target[J]. 中国化学工程学报, 2021, 33(5): 118-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||