中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (7): 1536-1542.DOI: 10.1016/j.cjche.2019.03.001
• Selected Papers on Sustainable Chemical Process Systems • 上一篇 下一篇
Yuan Wang1,2, Yang Xiao1, Guomin Xiao2
收稿日期:
2018-08-31
出版日期:
2019-07-28
发布日期:
2019-10-14
通讯作者:
Yang Xiao
Yuan Wang1,2, Yang Xiao1, Guomin Xiao2
Received:
2018-08-31
Online:
2019-07-28
Published:
2019-10-14
Contact:
Yang Xiao
摘要: It is of importance to convert glycerol, the primary by-product from biodiesel manufacturing, to various valuable C3 chemicals, such as acrolein via dehydration, lactic acid, 1,3-dihydroxyacetone via oxidation, and 1,3-propanediol, allyl alcohol via hydrogenolysis. As compared to petroleum-based resources, C3 chemicals from glycerol provide a benign, sustainable and atomically economic feature. Extensive heterogeneous catalysts have been designed, prepared and tested for these transformations. In recent five years, great progress, including high yields to target products over appropriate catalysts, insight into reaction mechanism and network, has been achieved. The present review systematically covers recent research progress on sustainable C3 chemical production from catalytic glycerol transformations. We hope that it will benefit future research on transformations of glycerol as well as other polyols.
Yuan Wang, Yang Xiao, Guomin Xiao. Sustainable value-added C3 chemicals from glycerol transformations: A mini review for heterogeneous catalytic processes[J]. 中国化学工程学报, 2019, 27(7): 1536-1542.
Yuan Wang, Yang Xiao, Guomin Xiao. Sustainable value-added C3 chemicals from glycerol transformations: A mini review for heterogeneous catalytic processes[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1536-1542.
[1] Transportation sector energy consumption:Monthly energy review May 2018 https://www.eia.gov/totalenergy/data/monthly/pdf/sec2_11.pdf, 2018, Accessed date:11 June 2018. [2] European Council Conclusions, Brussels http://ec.europa.eu/regional_policy/sources/cooperate/baltic/pdf/council_concl_30102009.pdf, 2009, Accessed date:11 June 2018. [3] European Expert Group on Future Transport Fuels, Future transport fuels https://ec.europa.eu/transport/sites/transport/files/themes/urban/cts/doc/2011-01-25-future-transport-fuels-report.pdf, 2011, Accessed date:11 June 2018. [4] University of Strathclyde Glasgow, Assesing biomass feasibility:Biomass as a fuel source (n.d.) http://www.esru.strath.ac.uk/EandE/Web_sites/06-07/Biomass/HTML/biomass_fuel.htm, Accessed date:11 June 2018. [5] U.S. Energy Information Administration, Biomass-Energy explained, your guide to understanding energy https://www.eia.gov/energyexplained/print.php?page=biomass_home, 2017, Accessed date:11 June 2018. [6] V. Menon, M. Rao, Trends in bioconversion of lignocellulose:Biofuels, platform chemicals & biorefinery concept, Prog. Energy Combust. Sci. 38(2012) 522-550. [7] Transport, energy and CO2:Moving toward sustainability https://www.iea.org/publications/freepublications/publication/transport2009.pdf, 2009, Accessed date:11 June 2018. [8] P. Ibarra-Gonzalez, B.-G. Rong, Systematic synthesis and evaluation of thermochemical conversion processes for lignocellulosic biofuels production:Total process evaluation and integration, Ind. Eng. Chem. Res. 57(30) (2018) 9925-9942. [9] P. McKendry, Energy production from biomass (part 1):Overview of biomass, Bioresour. Technol. 83(2002) 37-46. [10] A.R.K. Gollakota, N. Kishore, S. Gu, A review on hydrothermal liquefaction of biomass, Renew. Sustain. Energy Rev. 81(2018) 1378-1392. [11] D. Wen, H. Jiang, K. Zhang, Supercritical fluids technology for clean biofuel production, Prog. Nat. Sci. 19(2009) 273-284. [12] European Technology and Innovation Platform, FT-liquids and biomass to liquids http://www.biofuelstp.eu/btl.html, 2018, Accessed date:11 June 2018. [13] P.K. Swain, L.M. Das, S.N. Naik, Biomass to liquid:A prospective challenge to research and development in 21st century, Renew. Sustain. Energy Rev. 15(2011) 4917-4933. [14] A. Demirbas, Biomass resource facilities and biomass conversion processing for fuels and chemicals, Energy Convers. Manag. 42(2001) 1357-1378. [15] Z. Anwar, M. Gulfraz, M. Irshad, Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy:A brief review, J. Radiat. Res. Appl. Sci. 7(2014) 163-173. [16] K. Umeki, K. Yamamoto, T. Namioka, K. Yoshikawa, High temperature steamonly gasification of woody biomass, Appl. Energy 87(2009) 791-798. [17] A. Pandey, T. Bhaskar, M. Stöcker, R. Sukumaran, Recent Advances in ThermoChemical Conversion of Biomass, Elsevier, 2015. [18] A.V. Bridgwater, G.V.C. Peacocke, Fast pyrolysis processes for biomass, Renew. Sustain. Energy Rev. 4(2000) 1-73. [19] K. Rajendran, Effect of moisture content on lignocellulosic power generation:Energy, economic and environmental impacts, Processes 5(2017) 78. [20] S. Xiu, A. Shahbazi, Bio-oil production and upgrading research:A review, Renew. Sustain. Energy Rev. 16(2012) 4406-4414. [21] W.N. Rowlands, A. Masters, T. Maschmeyer, The biorefinery-Challenges, opportunities, and an Australian perspective, Sci. Technol. Soc. 28(2008) 149-158. [22] I. Hannula, E. Kurkela, A parametric modelling study for pressurised steam/O2-blown fluidised-bed gasification of wood with catalytic reforming, Biomass Bioenergy 38(2012) 58-67. [23] P.M. Maitlis, A. de Klerk, Greener Fischer-Tropsch Processes for Fuels and Feedstocks, First ed., Wiley-VCH, 2013. [24] E. van Steen, M. Claeys, Fischer-Tropsch catalysts for the biomass-to-liquid (BTL)-process, Chem. Eng. Technol. 31(2008) 655-666. [25] M. Balat, Sustainable transportation fuels from biomass materials, Energy Educ. Sci. Technol. 17(2006) 83-103. [26] M.J.A. Tijmensen, A.P.C. Faaij, C.N. Hamelinck, M.R.M. van Hardeveld, Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification, Biomass Bioenergy 23(2002) 129-152. [27] A. Kumar, D. Jones, M. Hanna, Thermochemical biomass gasification:A review of the current status of the technology, Energies 2(2009) 556-581. [28] P. Mponzi, Production of Biofuels by Fischer Tropsch Synthesis, Lapperanta University of Technology, 2011. https://www.doria.fi/bitstream/handle/10024/71973/nbnfi-fe201109275595.pdf?sequence=3, Accessed date:11 June 2018. [29] M.B. Nikoo, N. Mahinpey, Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS, Biomass Bioenergy 32(2008) 1245-1254. [30] A.P. Steynberg, M.E. Dry, B.H. Davis, B.B. Breman, Fischer-Tropsch reactors, Stud. Surf. Sci. Catal 152(04) (2004) 64-195. [31] A. de Klerk, P.M. Maitlis, What can we do with Fischer-Tropsch products?, in:Greener Fischer-Tropsch Process Fuels Feed, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013, pp. 81-105. [32] V. Calemma, A. de Klerk, Fischer-Tropsch syncrude:To refine or to upgrade?, in:Greener Fischer-Tropsch Process Fuels Feed, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013, pp. 281-309. [33] A. Demirbas, G. Arin, An overview of biomass pyrolysis, Energy Sources 24(2002) 471-482. [34] A.V. Bridgwater, G.V.C. Peacocke, Engineering developments in fast pyrolysis for bio-oils, in:Biomass Pyrolysis Oil Prop. Combust. Meet., 1994, pp. 110-127. [35] J.P. Diebold, A.V. Bridgwater, Overview of fast pyrolysis of biomass for the production of liquid fuels, in:Dev. Thermochem. Biomass Convers., Springer Netherlands, Dordrecht, 1997, pp. 5-23. [36] T.B. Reed, J.P. Diebold, R. Desrosiers, Perspectives in heat transfer requirements and mechanisms for fast pyrolysis, in:Spec. Work. Fast Pyrolysis Biomass, 1980, pp. 7-20. [37] A. Demirbas, Biorefineries, Springer London, London, 2010. [38] M. Strandberg, I. Olofsson, L. Pommer, S. Wiklund-Lindström, K. Åberg, A. Nordin, Effects of temperature and residence time on continuous torrefaction of spruce wood, Fuel Process. Technol. 134(2015) 387-398. [39] J.P. Diebold, Preliminary results in the fast pyrolysis of biomass to lower olefins, in:Pet. Chem. Div. ACS Symp. Altern. Feed. Petrochemicals, 1980. https://www.osti.gov/biblio/5036604, Accessed date:11 June 2018. [40] S. Jones, P. Meyer, L. Snowden-Swan, A. Padmaperuma, E. Tan, D. Abhijit, J. Jacobson, K. Cafferty, Process design and economics for the conversion of lignocellulosic biomass to hydrocarbon fuels:Fast pyrolysis and hydrotreating bio-oil pathway https://www.nrel.gov/docs/fy14osti/61178.pdf, 2013, Accessed date:11 June 2018. [41] D.C. Elliott, Transportation fuels from biomass via fast pyrolysis and hydroprocessing, Wiley Interdiscip. Rev. Energy Environ. 2(2013) 525-533. [42] Q. Lu, W.-Z. Li, X.-F. Zhu, Overview of fuel properties of biomass fast pyrolysis oils, Energy Convers. Manag. 50(2009) 1376-1383. [43] S.S. Toor, L. Rosendahl, A. Rudolf, Hydrothermal liquefaction of biomass:A review of subcritical water technologies, Energy 36(2011) 2328-2342. [44] K.K. Robinson, Reaction engineering of direct coal liquefaction, Energies 2(2009) 976-1006. [45] D.C. Elliott, P. Biller, A.B. Ross, A.J. Schmidt, S.B. Jones, Hydrothermal liquefaction of biomass:Developments from batch to continuous process, Bioresour. Technol. 178(2015) 147-156. [46] S. Bensaid, R. Conti, D. Fino, Direct liquefaction of ligno-cellulosic residues for liquid fuel production, Fuel 94(2012) 324-332. [47] J. Chumpoo, P. Prasassarakich, Bio-oil from hydro-liquefaction of bagasse in supercritical ethanol, Energy Fuel 24(2010) 2071-2077. [48] G.W. Huber, J.A. Dumesic, An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery, Catal. Today 111(2006) 119-132. [49] F. Behrendt, Y. Neubauer, M. Oevermann, B. Wilmes, N. Zobel, Direct liquefaction of biomass, Chem. Eng. Technol. 31(2008) 667-677. [50] H. Shui, Z. Cai, C. Xu, Recent advances in direct coal liquefaction, Energies 3(2010) 155-170. [51] J. Rowbotham, P. Dyer, H. Greenwell, M. Theodorou, Thermochemical processing of macroalgae:A late bloomer in the development of thirdgeneration biofuels?, Biofuels 3(2012) 441-461 [52] E. Chornet, R.P. Overend, Biomass liquefaction:An overview, in:Fundam. Thermochem. Biomass Convers, Springer Netherlands, Dordrecht, 1985, pp. 967-1002. [53] M. Balat, Mechanisms of thermochemical biomass conversion processes. Part 3:Reactions of liquefaction, Energy Sources Part A Recover. Util. Environ. Eff. 30(2008) 649-659. [54] E. Berl, Production of oil from plant material, Science 99(1944) 309-312. [55] U. Jena, K.C. Das, Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae, Energy Fuel 25(2011) 5472-5482. [56] T. Minowa, T. Kondo, S.T. Sudirjo, Thermochemical liquefaction of Indonesian biomass residues, Biomass Bioenergy 14(1998) 517-524. [57] J. Ramirez, R. Brown, T. Rainey, A review of hydrothermal liquefaction biocrude properties and prospects for upgrading to transportation fuels, Energies 8(2015) 6765-6794. [58] H. Durak, Bio-oil production from biomass via supercritical fluid extraction, in:AIP Conf. Proc, AIP Publishing LLC, 2016. [59] M.K. Akalın, K. Tekin, S. Karagöz, Supercritical fluid extraction of biofuels from biomass, Environ. Chem. Lett. 15(2017) 29-41. [60] J.B. Binder, R.T. Raines, Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals, J. Am. Chem. Soc. 131(2009) 1979-1985. [61] H. Durak, Bio-oil production from Glycyrrhiza glabra through supercritical fluid extraction, J. Supercrit. Fluids 95(2014) 373-386. [62] J. Lu, E.C. Boughner, C.L. Liotta, C.A. Eckert, Nearcritical and supercritical ethanol as a benign solvent:Polarity and hydrogen-bonding, Fluid Phase Equilib. 198(2002) 37-49. [63] S. Brand, R.F. Susanti, S.K. Kim, H. Lee, J. Kim, B.-I. Sang, Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction:Influence of physical process parameters, Energy 59(2013) 173-182. [64] M.K. Akalın, S. Karagöz, M. Akyüz, Supercritical ethanol extraction of bio-oils from German beech wood:Design of experiments, Ind. Crop. Prod. 49(2013) 720-729. [65] Z. Liu, F.-S. Zhang, Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks, Energy Convers. Manag. 49(2008) 3498-3504. [66] C. Mantell, L. Casas, M. Rodríguez, E. Martínez De La Ossa, Supercritical fluid extraction, in:S. Ramaswamy, H.-J. Huang, B.V. Ramarao (Eds.), Sep. Purif. Technol. Biorefineries, First ed., John Wiley & Sons, Ltd, Chichester, UK, 2013, pp. 79-100. [67] G.W.Huber,S.Iborra,A.Corma,Synthesisoftransportationfuelsfrombiomass:Chemistry, catalysts, and engineering, Chem. Rev. 106(2006) 4044-4098. [68] A.R.K. Gollakota, M.D. Subramanyam, N. Nanda Kishore, S. Sai Gu, Upgradation of bio-oil derived from lignocellulose biomass-A numerical approach, in:Proc. First Int. Conf. Recent Adv. Bioenergy Res, Springer, New Delhi, 2016, pp. 197-212. [69] A. de Klerk, Refining of Fischer-Tropsch syncrude:lessons from the past, Prepr. Pap. Am. Chem. Soc. Div. Pet. Chem. 53(2008) 105-109. [70] A. de Klerk, Fischer-Tropsch fuels refinery design, Energy Environ. Sci. 4(2011) 1177-1205. [71] R.C.Baliban,J.A.Elia,C.A.Floudas,B.Gurau,M.B.Weingarten,S.D.Klotz,Hardwood biomass to gasoline, diesel, and jet fuel:1. Process synthesis and global optimization of a thermochemical refinery, Energy Fuel 27(2013) 4302-4324. [72] A. de Klerk, E. Furimsky, Catalysis in the Refining of Fischer-Tropsch Syncrude, Royal Society of Chemistry, Cambridge, 2010. [73] X. Wang, X. Hu, C. Song, K.W. Lux, M. Namazian, T. Imam, Oligomerization of biomass-derived light olefins to liquid fuel:Effect of alkali treatment on the HZSM-5 catalyst, Ind. Eng. Chem. Res. 56(2017) 12046-12055. [74] T. Wang, Q. Zhang, M. Ding, C. Wang, Y. Li, Q. Zhang, L. Ma, Bio-gasoline production by coupling of biomass catalytic pyrolysis and oligomerization process, Energy Procedia 105(2017) 858-863. [75] P.-Y. le Goff, W. Kostka, J. Ross, Catalytic reforming, in:Handb. Pet. Technol, Springer, 2017, pp. 589-616. [76] A.M. Niziolek, O. Onel, J.A. Elia, R.C. Baliban, C.A. Floudas, Coproduction of liquid transportation fuels and C6-C8 aromatics from biomass and natural gas, AIChE J. 61(2015) 831-856. [77] E. Rosyadi, U. Priyanto, Suprapto, A. Roesyadi, M. Nurunnabi, T. Hanaoka, T. Miyazawa, K. Sakanishi, Biofuel production by hydrocracking of biomass FT wax over NiMo/Al2O3-SiO2 catalyst, J. Japan Inst. Energy 90(2011) 1171-1176. [78] D. Leckel, Hydroprocessing Euro 4-type diesel from high-temperature Fischer Tropsch vacuum gas oils, Energy Fuel 23(2009) 38-45. [79] R.J.J. Nel, A. de Klerk, Fischer Tropsch aqueous phase refining by catalytic alcohol dehydration, Ind. Eng. Chem. Res. 46(2007) 3558-3565. [80] A. de Klerk, Fischer-Tropsch Refining, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2011. [81] Betchel, Aspen process flowsheet simulationmodel of a battelle biomass-based gasification, Fischer Tropsch liquefaction and combined-cycle power plant, Pittsburgh, Pennsylvania https://www.osti.gov/servlets/purl/1395, 1998, Accessed date:11 June 2018. [82] D.C. Elliot, E.G. Baker, Hydrotreating biomass liquids to produce hydrocarbon fuels, in:10th Annu. Symp. Energy from Biomass Wastes, 1986. https://www.researchgate.net/publication/236432413_Hydrotreating_biomass_liquids_to_produce_hydrocarbon_fuels, Accessed date:11 June 2018. [83] A.H. Zacher, M.V. Olarte, D.M. Santosa, D.C. Elliott, S.B. Jones, A review and perspective of recent bio-oil hydrotreating research, Green Chem. 16(2014) 491-515. [84] D.C. Elliott, Historical developments in hydroprocessing bio-oils, Energy Fuel 21(2007) 1792-1815. [85] S.B. Jones, J.L. Male, Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking:2011 State of Technology and Projections to 2017, Pacific Northwest National Laboratory (U.S.), Richland, WA (United States), 2012. [86] F. Cavani, S. Albonetti, F. Basile, A. Gandini, Chemicals and Fuels from BioBased Building Blocks, WILEY-VCH, 2016. [87] D.C. Elliott, T.R. Hart, G.G. Neuenschwander, L.J. Rotness, M.V. Olarte, A.H. Zacher, Y. Solantausta, Catalytic hydroprocessing of fast pyrolysis bio-oil from pine sawdust, Energy Fuel 26(2012) 3891-3896. [88] J. Ancheyta Juárez, J.G. Speight, Hydroprocessing of Heavy Oils and Residua, CRC Press, USA, 2007. [89] A.V. Bridgwater, Upgrading biomass fast pyrolysis liquids, Environ. Prog. Sustain. Energy 31(2012) 261-268. [90] P.M. Mortensen, J.-D. Grunwaldt, P.A. Jensen, K.G. Knudsen, A.D. Jensen, A review of catalytic upgrading of bio-oil to engine fuels, Appl. Catal. A Gen. 407(2011) 1-19. [91] H.T. Liao, X.N. Ye, Q. Lu, C.Q. Dong, Overview of bio-oil upgrading via catalytic cracking, Adv. Mater. Res. 827(2013) 25-29. [92] K.L. Hew, A.M. Tamidi, S. Yusup, K.T. Lee, M.M. Ahmad, Catalytic cracking of biooil to organic liquid product (OLP), Bioresour. Technol. 101(2010) 8855-8858. [93] V. Paasikallio, C. Lindfors, J. Lehto, A. Oasmaa, M. Reinikainen, Short vapour residence time catalytic pyrolysis of spruce sawdust in a bubbling fluidizedbed reactor with HZSM-5 catalysts, Top. Catal. 56(2013) 800-812. [94] H. Zhang, Y.-T. Cheng, T.P. Vispute, R. Xiao, G.W. Huber, Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5:The hydrogen to carbon effective ratio, Energy Environ. Sci. 4(2011) 2297-2307. [95] G.W. Huber, A. Corma, Synergies between bio-and oil refineries for the production of fuels from biomass, Angew. Chem. Int. Ed. 46(2007) 7184-7201. [96] E. Furimsky, Catalytic hydrodeoxygenation, Appl. Catal. A Gen. 199(2000) 147-190. [97] A.V. Bridgwater, Catalysis in thermal biomass conversion, Appl. Catal. A Gen. 116(1994) 5-47. [98] M. Grilc, G. Veryasov, B. Likozar, A. Jesih, J. Levec, Hydrodeoxygenation of solvolysed lignocellulosic biomass by unsupported MoS2, MoO2, Mo2C and WS2 catalysts, Appl. Catal. B Environ. 163(2015) 467-477. [99] S. Ramaswamy, H.-J. Huang, B.V. Ramarao, Separation and Purification Technologies in Biorefineries, WILEY, 2013. [100] M. Errico, E. Sanchez-Ramirez, J.J. Quiroz-Ramìrez, B.-G. Rong, J.G. SegoviaHernandez, Multiobjective optimal acetone-butanol-ethanol separation systems using liquid-liquid extraction-assisted Divided Wall columns, Ind. Eng. Chem. Res. 56(2017) 11575-11583. [101] C.E. Torres-Ortega, B.-G. Rong, Synthesis, design, and rigorous simulation of the bioethanol recovery and dehydration from an actual lignocellulosic fermentation broth, Ind. Eng. Chem. Res. 55(2016) 210-225. [102] C.E. Torres-Ortega, B.-G. Rong, Synthesis and simulation of efficient divided wallcolumnsequencesforbioethanolrecoveryandpurificationfromanactual lignocellulosic fermentation broth, Ind. Eng. Chem. Res. 55(2016) 7411-7430. [103] R.W. Lin, Removal of water from bio-oil, USA Pat., 20110139597A1, (2010). 104] A.A. Peterson, F. Vogel, R.P. Lachance, M. Fröling, M.J. Antal Jr, J.W. Tester, Thermochemical biofuel production in hydrothermal media:A review of suband supercritical water technologies, Energy Environ. Sci. 1(2008) 32-65. [105] A. Demirbas, Effect of lignin content on aqueous liquefaction products of biomass, Energy Convers. Manag. 41(2000) 1601-1607. [106] H.-M. Liu, F.-Y. Wang, Y.-L. Liu, Alkaline pretreatment and hydrothermal liquefaction of cypress for high yield bio-oil production, J. Anal. Appl. Pyrolysis 108(2014) 136-142. [107] Z. Guo, S. Wang, Y. Gu, G. Xu, X. Li, Z. Luo, Separation characteristics of biomass pyrolysis oil in molecular distillation, Sep. Purif. Technol. 76(2010) 52-57. [108] J.A. Capunitan, S.C. Capareda, Characterization and separation of corn stover bio-oil by fractional distillation, Fuel 112(2013) 60-73. [109] S. Wang, Y. Gu, Q. Liu, Y. Yao, Z. Guo, Z. Luo, K. Cen, Separation of bio-oil by molecular distillation, Fuel Process. Technol. 90(2009) 738-745. [110] J.N. Murwanashyaka, H. Pakdel, C. Roy, Seperation of syringol from birch wood-derived vacuum pyrolysis oil, Sep. Purif. Technol. 24(2001) 155-165. [111] W.F. Leu, F.M. Tiller, An overview of solid-liquid separation in coal liquefaction processes, Powder Technol. 40(1984) 65-80. [112] H. Yang, J. Yao, G. Chen, W. Ma, B. Yan, Y. Qi, Overview of upgrading of pyrolysis oil of biomass, Energy Procedia 61(2014) 1306-1309. [113] J.D. Adjaye, N.N. Bakhshi, Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I:Conversion over various catalysts, Fuel Process. Technol. 45(1995) 161-183. [114] D.F. Rodríguez Vallejo, A. De Klerk, Improving the Interface between Fischer-Tropsch Synthesis and Refining, Energy Fuels. 27(6) (2013) 3137-3147. [115] D.C. Elliott, G.F. Schiefelbein, Liquid hydrocarbon fuels from biomass, Am. Chem. Soc. Div. Fuel Chem. Prepr. 34(1989) 1160-1166. [116] Z.X. Wang, T. Dong, L.X. Yuan, T. Kan, X.F. Zhu, Y. Torimoto, M. Sadakata, Q.X. Li, Characteristics of bio-oil-syngas and its utilization in Fischer-Tropsch synthesis, Energy Fuel 21(2007) 2421-2432. [117] C.C. Ward, F.G. Schwartz, N.G. Adams, Composition of Fischer-Tropsch diesel fuel, Ind. Eng. Chem. 43(1951) 1117-1119. [118] A.C. Dimian, C.S. Bildea, A.A. Kiss, Process intensification, Coputer Aided Chemical Engineering 35(2014) 397-448. [119] E. Lebas, S. Jullian, C. Travers, P. Capron, J.-F. Joly, M. Thery, Paraffin isomerisation process using reactive distillation https://patents.google.com/patent/US5948948, 1997, Accessed date:5 September 2018. [120] F.H. Mahfud, I. Melián-Cabrera, R. Manurung, H.J. Heeres, Biomass to fuels:Upgrading of flash pyrolysis oil by reactive distillation using a high boiling alcohol and acid catalysts, Process. Saf. Environ. Prot. 85(2007) 466-472. [121] P. Ibarra-Gonzalez, C.-E. Torres-Ortega, B.-G. Rong, A dual methodology for synthesis of Woody biomass to liquid (BtL) thermochemical conversion routes and bio-oil upgrading, Comput. Aided Chem. Eng. 40(2017) 679-684. [122] C.E. Torres-Ortega, B.-G. Rong, Integrated biofuels process synthesis:integration between bioethanol and biodiesel processes, in:B.-G. Rong (Ed.), Process Synth. Process Intensif. Methodol. Approaches, Walter de Gruyter, 2017, pp. 242-290. [123] C.E. Torres-Ortega, J. Gong, F. You, B.-G. Rong, Optimal synthesis of integrated process for co-production of biodiesel and hydrotreated vegetable oil (HVO) diesel from hybrid oil feedstocks, Comput. Aided Chem. Eng. 40(2017) 673-678. [124] A.R.G. da Silva, C.E. Torres Ortega, B.-G. Rong, Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production, Bioresour. Technol. 218(2016) 561-570. [125] A.R.G. da Silva, M. Errico, B.-G. Rong, Evaluation of organosolv pretreatment for bioethanol production from lignocellulosic biomass:Solvent recycle and process integration, Biomass Convers. Biorefinery 8(2018) 397-411. |
[1] | Baoyu Liu, Feng Xiong, Jianwen Zhang, Manna Wang, Yi Huang, Yanxiong Fang, Jinxiang Dong. Enhanced ortho-selective t–butylation of phenol over sulfonic acid functionalized mesopore MTW zeolites[J]. 中国化学工程学报, 2023, 60(8): 1-7. |
[2] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination[J]. 中国化学工程学报, 2023, 59(7): 193-199. |
[3] | Tingjun Fu, Ran Wang, Kun Ren, Liangliang Zhang, Zhong Li. Intensified shape selectivity and alkylation reaction for the two-step conversion of methanol aromatization to p-xylene[J]. 中国化学工程学报, 2023, 59(7): 240-250. |
[4] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate[J]. 中国化学工程学报, 2023, 57(5): 1-9. |
[5] | Chenyang Zhao, Yinhan Cheng, Guangfei Qu, Yongheng Yuan, Fenghui Wu, Ye Liu, Shan Liu, Junyan Li, Ping Ning. High-performance liquid-phase catalytic purification of phosphine in tail gas using Pd(II)/Cu(II) composite[J]. 中国化学工程学报, 2023, 57(5): 98-108. |
[6] | Juan Du, Aibing Chen, Senlin Hou, Xueqing Gao. Self-deposition for mesoporous carbon nanosheet with supercapacitor application[J]. 中国化学工程学报, 2023, 55(3): 34-40. |
[7] | Mengting Liu, Xuexue Dong, Zengjing Guo, Aihua Yuan, Shuying Gao, Fu Yang. Enabling tandem oxidation of benzene to benzenediol over integrated neighboring V-Cu oxides in mesoporous silica[J]. 中国化学工程学报, 2023, 55(3): 236-245. |
[8] | Qian Zhu, Yan Zhuang, Hongqing Zhao, Peng Zhan, Cong Ren, Changsheng Su, Wenqiang Ren, Jiawen Zhang, Di Cai, Peiyong Qin. 2,5-Diformylfuran production by photocatalytic selective oxidation of 5-hydroxymethylfurfural in water using MoS2/CdIn2S4 flower-like heterojunctions[J]. 中国化学工程学报, 2023, 54(2): 180-191. |
[9] | Wenjuan Yan, Puhua Sun, Chen Luo, Xingfan Xia, Zhifei Liu, Yuming Zhao, Shuxia Zhang, Liang Sun, Feng Du. PtCo-based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism[J]. 中国化学工程学报, 2023, 53(1): 101-123. |
[10] | Kechang Gao, Shengjuan Shao, Zhixing Li, Jiaxin Jing, Weizhou Jiao, Youzhi Liu. Kinetics of the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation[J]. 中国化学工程学报, 2023, 53(1): 317-323. |
[11] | Yishuang Wang, Na Li, Mingqiang Chen, Defang Liang, Chang Li, Quan Liu, Zhonglian Yang, Jun Wang. Glycerol steam reforming over hydrothermal synthetic Ni-Ca/attapulgite for green hydrogen generation[J]. 中国化学工程学报, 2022, 48(8): 176-190. |
[12] | Shuo Li, Jianlin Cao, Xiang Feng, Yupeng Du, De Chen, Chaohe Yang, Wenhua Wang, Wanzhong Ren. Insights into the confinement effect on isobutane alkylation with C4 olefin catalyzed by zeolite catalyst: A combined theoretical and experimental study[J]. 中国化学工程学报, 2022, 47(7): 174-184. |
[13] | Zhouxin Chang, Feng Yu, Zhisong Liu, Zijun Wang, Jiangbing Li, Bin Dai, Jinli Zhang. Ni-Al mixed metal oxide with rich oxygen vacancies: CO methanation performance and density functional theory study[J]. 中国化学工程学报, 2022, 46(6): 73-83. |
[14] | Weizhou Jiao, Xingyue Wei, Shengjuan Shao, Youzhi Liu. Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O3 in a rotating packed bed[J]. 中国化学工程学报, 2022, 45(5): 133-142. |
[15] | Xin Ren, Li Leng, Yueqiang Cao, Jing Zhang, Xuezhi Duan, Xueqing Gong, Jinghong Zhou, Xinggui Zhou. Enhanced recycling performance of bimetallic Ir-Re/SiO2 catalyst by amberlyst-15 for glycerol hydrogenolysis[J]. 中国化学工程学报, 2022, 45(5): 171-181. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||