[1] D.W. Davidson, M.K. El-Defrawy, M.O. Fuglam, A.S. Judge, Natural gas hydrates in northern Canada, Proceedings, Third International Conference on Permafrost, July 10-13, 1978, Edmonton, AB, National Research Council of Canada, Ottawa, ON, vol 1, 1978, pp. 938-943. [2] K.A. Kvenvolden, Potential effects of gas hydrate on human welfare, Proc. Natl. Acad. Sci. U. S. A. 96(7) (1999) 3420-3426. [3] E.D. Sloan, C. Koh, Clathrate Hydrates of Natural Gases, 3rd edition CRC Press, 2007. [4] Grace, et al., Energy From Gas Hydrates:Assessing the Opportunities and Challenges for Canada, The Council of Canadian Academies, Ottawa, Canada, 2008. [5] Z.R. Chong, S.H.B. Yang, P. Babu, P. Linga, X. Li, Review of natural gas hydrates as an energy resource:Prospects and challenges, Appl. Energy 162(2016) 1633-1652. [6] H. Lu, Y.T. Seo, J.W. Lee, I. Moudrakovski, J.A. Ripmeester, N.R. Chapman, R.B. Coffin, G. Gardner, J. Pohlman, Complex gas hydrate from the Cascadia margin, Nature 445(7125) (2007) 303-306. [7] P. Englezos, Clathrate hydrates, Ind. Eng. Chem. Res. 32(7) (1993) 1251-1274. [8] S.G. Hatzikiriakos, P. Englezos, The relationship between global warming and methane gas hydrates in the earth, Chem. Eng. Sci. 48(23) (1993) 3963-3969. [9] T. Nakamura, T. Makino, T. Sugahara, K. Ohgaki, Stability boundaries of gas hydrates helped by methane-Structure-H hydrates of methylcyclohexane and cis-1, 2-dimethylcyclohexane, Chem. Eng. Sci. 58(2003) 269-273. [10] Z.R. Chong, M. Yang, B.C. Khoo, P. Linga, Size effect of porous media on CH4 hydrate formation & dissociation in excess gas environment, Ind. Eng. Chem. Res. 55(2016) 7981-7991. [11] P.D. Dholabhai, P. Englezos, N. Kalogerakis, P.R. Bishnoi, Equilibrium conditions for CH4 hydrate formation in aqueous mixed electrolyte solutions, Can. J. Chem. Eng. 69(1991) 800-805. [12] Z.R. Chong, A.H.M.Chan,P.Babu, M. Yang, P.Linga, Effect ofNaClonmethanehydrate formation and dissociation in porous media, J. Nat. Gas Sci. Eng. 27(2015) 178-189. [13] T.S. Collett, Why not gas hydrates, 9th International Conference on Gas Hydrates, (Keynote), June 25-30, 2017, (Denver, Colorado, USA). [14] J.G.Vlahakis,H.-S.Chen,M.S.Suwandi,A.J.Barduhn,Thegrowthrateoficecrystals:Properties of carbon dioxide hydrates, a review of properties of 51 gas hydrates, Syracuse U. Research and Development Report 830, US Department of the Interior, November. 1972. [15] H. Komatsu, M. Ota, R.L. Smith, H. Inomata, Review of CO2-CH4 clathrate hydrate replacement reaction laboratory studies-Properties and kinetics, J. Taiwan Inst. Chem. Eng. 44(2013) 517-537. [16] N. Goel, In situ methane hydrate dissociation with carbon dioxide sequestration:Current knowledge and issues, J. Pet. Sci. Eng. 51(2006) 169-184. [17] D. Schoderbek, H. Farrell, K. Hester, J. Howard, K. Raterman, S. Silpngarmlert, K.L. Martin, B. Smith, P. Klein, ConocoPhillips gas hydrate production test final report, DOE Award no:DE-NT0006553, Prepared for USDOE, National Energy Technology Laboratory, 2013(204 pages). [18] S. Adisasmito, R.J. Frank, E.D. Sloan, Hydrates of carbon dioxide and methane mixtures, J. Chem. Eng. Data 36(1991) 66-71. [19] D. Sun, J. Ripmeester, P. Englezos, Phase equilibria for the CO2/CH4/N2/H2O system in the hydrate region under conditions relevant to storage of CO2 in depleted natural gas reservoirs, J. Chem. Eng. Data 61(2016) 4061-4067. [20] D. Sun, P. Englezos, Determination of CO2 storage density in a partially water saturated lab reservoir containing CH4 from injection of captured flue gas by gas hydrate crystallization, Can. J. Chem. Eng. 95(1) (2017) 69-76. [21] R. Boswell, D. Schoderbek, T.S. Collett, S. Ohtsuki, M. White, B.J. Anderson, The Iġnik Sikumi Field Experiment, Alaska North Slope:Design, operations, and implications for CO2-CH4 exchange in gas hydrate reservoirs, Energy Fuel 31(2017) 140-153. [22] P. Englezos, M. Messah, J. Chau, Gas recovery through the injection of carbon dioxide or concentrated flue gas in a natural gas hydrate reservoir, Offshore Technology Conference Asia, USDoE, National Energy Technology Laboratory, Kuala Lumpur, Malaysia, 20-23 March, 2018, https://doi.org/10.4043/28374-MS. [23] D.H. Smith, K. Seshadri, J.W. Wilder, Assessing the thermodynamic feasibility of methane hydrate into CO2 hydrate in porous media, J. Energy Environ. Res. 1(1) (2001) 101-116. [24] H. Lee, Y. Seo, Y.T. Seo, I.L. Moudrakovski, J.A. Ripmeester, Recovering methane from solid methane hydrate with carbon dioxide, Angew. Chem. Int. Ed. 42(41) (2003) 5048-5051. [25] V.Sh. Shagapov, M.K. Khasanov, Regimes of methane recovery from gas hydrate on injection of "warm" CO2 into a porous medium, High Temp. 55(5) (2017) 737-745. [26] P.G. Brewer, Ed.T. Peltzer, P.M. Walz, E.K. Coward, L.A. Stern, S.H. Kirby, J. Pinkston, Deep-sea field test of the CH4 hydrate to CO2 hydrate spontaneous conversion hypothesis, Energy Fuel 28(11) (2014) 7061-7069. [27] S.A. Bagherzadeh, S. Alavi, J.A. Ripmeester, P. Englezos, Formation of methane nanobubbles during hydrate decomposition and their effect on hydrate growth, J. Chem. Phys. 142(21) (2015) (214701-8). [28] M. Cha, K. Shin, H. Lee, I.L. Moudrakovski, J.A. Ripmeester, Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy, Environ. Sci. Technol. 49(2015) 1964-1971. [29] M. Yang, Z.R. Chong, J. Zheng, Y. Song, P. Linga, Advances in nuclear magnetic resonance (NMR) techniques for the investigation of clathrate hydrates, Renew. Sust. Energ. Rev. 74(2017) 1346-1360. [30] B. Kvamme, Thermodynamic limitations of the CO2/N2 mixture injected into CH4 hydrate in the Ignik Sikumi field trial, J. Chem. Eng. Data 61(2016) 1280-1295. [31] S.S. Tupsakhare, G.C. Fitgerald, M.J. Castaldi, Thermally assisted dissociation of methane hydrates and the impact of CO2 injection, Ind. Eng. Chem. Res. 55(2016) 10465-10476. [32] Y.P. Handa, A calorimetric study of naturally occurring gas hydrates, Ind. Eng. Chem. Res. 27(1988) 872-874. [33] P. Linga, C. Haligva, S.-C. Nam, J.A. Ripmeester, P. Englezos, Recovery of methane from hydrate formed in a variable volume bed of silica sand particles, Energy Fuel 23(11) (2009) 5508-5516. [34] C. Haligva, P. Linga, J. Ripmeester, P. Englezos, Recovery of CH4 from a variable volume bed of silica sand/hydrate by depressurization, Energy Fuel 24(5) (2010) 2947-2955. [35] Bhown, Freeman, Analysis and status of post-combustion carbon dioxide capture technologies, Environ. Sci. Technol. 45(2011) 8624-8632. [36] J.M. Prausnitz, R.N. Lichtenthaler, E.G. deAzevedo, Molecular Thermodynamics of Fluid Phase Equilibria, 3rd edition McGraw Hill, 1998. [37] Z. Yin, Z.R. Ching, H.K. Tan, P. Linga, Review of gas hydrate dissociation kinetic models for energy recovery, J. Nat. Gas Sci. Eng. 35(2016) 1362-1387. [38] A. Gupta, J. Lachance, E.D. Sloan, C. Koh, Measurements of methane hydrate heat of dissociation using high pressure differential scanning calorimetry, Chem. Eng. Sci. 63(2008) 5848-5853. [39] J.G. Vlahakis, H.-S. Chen, M.S. Suwandi, A.J. Barduhn, The growth rate of ice crystals:Properties of carbon dioxide hydrate, a review of properties of 51 gas hydrates, Syracuse University Research and Development Report 830; Prepared for the Office of Saline Water, US Department of the Interior, November 1972. [40] M.M. Côté, J.F. Wright, Preliminary assessment of the geological potential for sequestration of CO2 as gas hydrate in the Alberta portion of the Western Canada Sedimentary Basin, Geol. Surv. Can. Open File 6582(2013). [41] O.Y. Zatsepina, M. Pooladi-Darvish, Storage of CO2 hydrate in shallow gas reservoirs:Pre- and post-injection periods, Greenhouse Gases Sci. Technol. 1(3) (2011) 223-236. [42] D. Sun, P. Englezos, Storage of CO2 in a partially water saturated porous medium at gas hydrate formation conditions, Int. J. Greenhouse Gas Control 25(2014) 1-8. [43] D. Sun, P. Englezos, CO2 storage capacity in laboratory simulated depleted hydrocarbon reservoirs-Impact of salinity and additive, J. Nat. Gas Sci. Eng. 35(1) (2016) 1416-1425. [44] M. Massah, D. Sun, H. Sharifi, P. Englezos, Demonstration of gas-hydrate assisted carbon dioxide sequestration through horizontal injection in lab-scale reservoir, J. Chem. Thermodyn. 117(2017) 106-112. |