[1] V. Hessel, H. Löwe, F. Schönfeld, Micromixers-A review on passive and active mixing principles, Chem. Eng. Sci. 60(8-9) (2005) 2479-2501. [2] N. Kockmann, T. Kiefer, M. Engler, P. Woias, Convective mixing and chemical reactions in microchannels with high flow rates, Sensors Actuators B Chem. 117(2) (2006) 495-508. [3] G.S. Jeong, S. Chung, C.B. Kim, S.H. Lee, Applications of micromixing technology, Analyst 135(3) (2010) 460-473. [4] Y.K. Suh, S. Kang, A review on mixing in microfluidics, Micromachines 1(3) (2010) 82-111. [5] N.T.Nguyen,Z.Wu,Micromixers -Areview, J. Micromech. Microeng.15(2)(2004)R1. [6] D. Gobby, P. Angeli, A. Gavriilidis, Mixing characteristics of T-type microfluidic mixers, J. Micromech. Microeng. 11(2) (2001) 126. [7] V. Hessel, S. Hardt, H. Löwe, F. Schönfeld, Laminar mixing in different interdigital micromixers:I. Experimental characterization, AIChE J. 49(3) (2003) 566-577. [8] M. Hoffmann, M. Schlüter, N. Räbiger, Experimental investigation of liquid-liquid mixing in T-shaped micro-mixers using μ-LIF and μ-PIV, Chem. Eng. Sci. 61(9) (2006) 2968-2976. [9] M. Engler, N. Kockmann, T. Kiefer, P. Woias, Numerical and experimental investigations on liquid mixing in static micromixers, Chem. Eng. J. 101(1) (2004) 315-322. [10] S.H. Wong, M.C. Ward, C.W. Wharton, Micro T-mixer as a rapid mixing micromixer, Sensors Actuators B Chem. 100(3) (2004) 359-379. [11] D. Bothe, C. Stemich, H.J. Warnecke, Fluid mixing in a T-shaped micro-mixer, Chem. Eng. Sci. 61(9) (2006) 2950-2958. [12] A. Soleymani, E. Kolehmainen, I. Turunen, Numerical and experimental investigations of liquid mixing in T-type micromixers, Chem. Eng. J. 135(2008) S219-S228. [13] S. Dreher, N. Kockmann, P. Woias, Characterization of laminar transient flow regimes and mixing in T-shaped micromixers, Heat Transfer Eng. 30(1-2) (2009) 91-100. [14] S. Thomas, T.A. Ameel, An experimental investigation of moderate Reynolds number flow in a T-channel, Exp. Fluids 49(6) (2010) 1231-1245. [15] C.H. Lin, C.H. Tsai, L.M. Fu, A rapid three-dimensional vortex micromixer utilizing self-rotation effects under low Reynolds number conditions, J. Micromech. Microeng. 15(5) (2005) 935. [16] C.A. Cortes-Quiroz, A. Azarbadegan, M. Zangeneh, Evaluation of flow characteristics that give higher mixing performance in the 3-D T-mixer versus the typical T-mixer, Sensors Actuators B Chem. 202(2014) 1209-1219. [17] A.D. Stroock, S.K. Dertinger, A. Ajdari, I. Mezić, H.A. Stone, G.M. Whitesides, Chaotic mixer for microchannels, Science 295(5555) (2002) 647-651. [18] L. Chen, G. Wang, C. Lim, G.H. Seong, J. Choo, E.K. Lee, J.M. Song, Evaluation of passive mixing behaviors in a pillar obstruction poly (dimethylsiloxane) microfluidic mixer using fluorescence microscopy, Microfluid. Nanofluid. 7(2) (2009) 267-273. [19] L.Y. Tseng, A.S. Yang, C.Y. Lee, C.Y. Hsieh, CFD-based optimization of a diamondobstacles inserted micromixer with boundary protrusions, Eng. Appl. Comput. Fluid Mech. 5(2) (2011) 210-222. [20] Y. Fang, Y. Ye, R. Shen, P. Zhu, R. Guo, Y. Hu, L. Wu, Mixing enhancement by simple periodic geometric features in microchannels, Chem. Eng. J. 187(2012) 306-310. [21] A. Afzal, K.Y. Kim, Performance evaluation of three types of passive micromixer with convergent-divergent sinusoidal walls, J. Mar. Sci. Technol. 22(6) (2014) 680-686. [22] A. Alam, A. Afzal, K.Y. Kim, Mixing performance of a planar micromixer with circular obstructions in a curved microchannel, Chem. Eng. Res. Des. 92(3) (2014) 423-434. [23] H.S. Santana, J.L. Silva Jr., D.S. Tortola, O.P. Taranto, Transesterification of sunflower oil in microchannels with circular obstructions, Chin. J. Chem. Eng. 26(4) (2018) 852-863. [24] J. Glimm, H. Jin, Y. Zhang, Front tracking for multiphase fluid mixing, Adv. Fluid Mech. 37(2004) 13-22. [25] Y. Zhou, N. Ray, H. Lim, S. Wang, V.F. de Almeida, J. Glimm, X. Jiao, Development of a front tracking method for two-phase micromixing of incompressible viscous fluids with interfacial tension in solvent extraction, Technical Report ORNL/TM-2012/28, Oak Ridge National Laboratory, 2012. [26] C.M. Balan, D. Broboana, C. Balan, Mixing process of immiscible fluids in microchannels, Int. J. Heat Fluid Flow 31(6) (2010) 1125-1133. [27] G. Tryggvason, M. Ma, J. Lu, DNS-assisted modeling of bubbly flows in vertical channels, Nucl. Sci. Eng. 184(3) (2016) 312-320. [28] M. Ma, J. Lu, G. Tryggvason, Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system, Phys. Fluids 27(9) (2015), 092101. [29] M. Ma, J. Lu, G. Tryggvason, Using statistical learning to close two-fluid multiphase flow equations for bubbly flows in vertical channels, Int. J. Multiphase Flow 85(2016) 336-347. [30] G. Tryggvason, R. Scardovelli, S. Zaleski, Direct Numerical Simulations of Gas-Liquid Multiphase Flows, Cambridge University Press, UK, 2011. [31] T. Matsunaga, K. Nishino, Swirl-inducing inlet for passive micromixers, RSC Adv. 4(2) (2014) 824-829. |