[1] C. Ramshaw, The incentive for process intensification, Proceedings, 1st Intl. Conf. Proc. Intensif. For Chem. Ind., 18, BHR Group, London 1995, p. 1. [2] A.I. Stankiewicz, J.A. Moulijn, Process intensification:transforming chemical engineering, Chem. Eng. Prog. (2000) 22-34. [3] R.C. Lo, Application of microfluidics in chemical engineering, Chem. Eng. Process Technol. 1(2013) 1002. [4] H.S. Fogler, Elements of Chemical Reaction Engineering, fouth ed. Prentice Hall PTR, Upper Saddle River, NJ, 2006. [5] G.M. Whitesides, The origins and the future of microfluidics, Nature 442(2006) 368-373. [6] A. Skardal, S.V. Murphy, M. Devarasetty, I. Mead, H.-W. Kang, Y.-J. Seol, Y.S. Zhang, S.-R. Shin, L. Zhao, J. Aleman, A.R. Hall, T.D. Shupe, A. Kleensang, M.R. Dokmeci, S.J. Lee, J.D. Jackson, J.J. Yoo, T. Hartung, A. Khademhosseini, S. Soker, C.E. Bishop, A. Atala, Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform, Sci. Rep. 7(2017) 8837. [7] S. Cardoso, D.C. Leitao, T.M. Dias, et al., Challenges and trends in magnetic sensor integration with microfluidics for biomedical applications, J. Phys. D. Appl. Phys. 50(2017). [8] H.S. Santana, G.B. Sanchez, O.P. Taranto, Evaporation of excess alcohol in biodiesel in a microchannel heat exchanger with Peltier module, Chem. Eng. Res. Des. 124(2017) 20-28. [9] H.S. Santana, D.S. Tortola, E.M. Reis, J.L. Silva Jr., O.P. Taranto, Transesterification reaction of sunflower oil and ethanol for biodiesel synthesis in microchannel reactor:experimental and simulation studies, Chem. Eng. J. 302(2016) 752-762. [10] J.L. Silva Jr., H.S. Santana, G.B. Sanchez, O.P. Taranto, Numerical simulation of excess ethanol evaporation from biodiesel in a micro heat-exchanger, Chem. Eng. Trans. 57(2017) 1123-1128. [11] J. Singh, N. Kockmann, Novel three-dimensional microfluidic device for process intensification, Chem. Eng. Process. Process Intensif. 86(2014) 78-89. [12] A. Pohar, I. Plazl, Process intensification through microreactor application, Chem. Biochem. Eng. Q. 23(2009) 537-544. [13] M.P.C. Marques, P. Fernandes, Microfluidic devices:useful tools for bioprocess intensification, Molecules 16(2011) 8368-8401. [14] J. Zhang, K. Wang, A.R. Teixeira, K.F. Jensen, G. Luo, Design and scaling up of microchemical systems:a review, Annu. Rev. Chem. Biomol. Eng. 8(2017) 285-305. [15] J. Melo, Usinas de biodiesel em Pernambuco, https://www.biodieselbr.com/noticias/colunistas/convidado/usinas-biodiesel-pernambuco-300410.htm,Accessed date:16 November 2017. [16] K.S. Elvira, X.C. Solvas, R.C.R. Wootton, A.J. Mello, The past, present and potential for microfluidic reactor technology in chemical synthesis, Nat. Chem. 5(2013) 905-915. [17] H.S. Santana, J.L. Silva Jr., O.P. Taranto, Numerical simulation of biodiesel synthesis in microchannels with circular obstructions, Chem. Eng. Process. Process Intensif. 98(2015) 137-146. [18] H.S. Santana, J.L. Silva Jr., O.P. Taranto, Optimization of micromixer with triangular baffles for chemical process in millidevices, Sensors Actuators B Chem. 281(2019) 191-203. [19] T. Xie, L. Zhang, N. Zu, Biodiesel synthesis in microreactors, Green Process. Synth. 1(2012) 61-70. [20] Y. Zhang, S.C. Born, K.F. Jensen, Scale-up investigation of the continuous phasetransfer-catalyzed hypochlorite oxidation of alcohols and aldehydes, Org. Process. Res. Dev. 18(2014) 1476-1481. [21] T. Han, L. Zhang, H. Xu, J. Xuan, Factory-on-chip:modularised microfluidic reactors for continuous mass production of functional materials, Chem. Eng. J. 326(2017) 765-773. [22] R.E. Billo, C.R. Oliver, R. Charoenwat, B.H. Dennis, P.A. Wilson, J.W. Priest, H. Beardsley, A cellular manufacturing process for a full-scale biodiesel microreactor, J. Manuf. Syst. 37(2015) 409-416. [23] K. Wang, Y. Lu, G. Luo, Strategy for scaling-up of a microsieve dispersion reactor, Chem. Eng. Technol. 37(2014) 2116-2122. [24] M.W. Bedore, N. Zaborenko, K.F. Jensen, T.F. Jamison, Aminolysis of epoxides in a microreactor system:a continuous flow approach to β-amino alcohols, Org. Process. Res. Dev. 14(2010) 432-440. [25] W.K.T. Coltro, E. Piccin, E. Carrilho, D.P. de Jesus, A.F. da Silva, H.D.T. da Silva, C.L. Lago, Microssistemas de análises químicas. Introdução, tecnologias de fabricação, instrumentação e aplicações, Quím. Nova 30(2007) 1986-2000. [26] J.M. Lee, M. Zhang, W.Y. Yeong, Characterization and evaluation of 3D printed microfluidic chip for cell processing, Microfluid. Nanofluid. 20(2016) 5. [27] K.V. Wong, A. Hernandez, A review of additive manufacturing, ISRN Mech. Eng. 2012(2012), 208760. https://doi.org/10.5402/2012/208760(10 pages). [28] P.J. Kitson, S. Glatzel, W. Chen, C.G. Lin, Y.F. Song, L. Cronin, 3D printing of versatile reactionware for chemical synthesis, Nat. Protoc. 11(2016) 920-936. [29] C. Chen, B.T. Mehl, A.S. Munshi, A.D. Townsend, D.M. Spence, R.S. Martin, 3D-printed microfluidic devices:fabrication, advantages and limitations-a mini review, Anal. Methods 8(2016) 6005-6012. [30] W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams, C.C.L. Wang, Y.C. Shin, S. Zhang, P.D. Zavattieri, The satus, challenges, and future of additive manufacturing in engineering, Comput. Aided Des. 69(2015) 65-89. [31] A.J. Capel, S. Edmonson, S.D.R. Christie, R.D. Goodrridge, R.J. Bibb, M. Thurstans, Design and additive manufacture for flow chemistry, Lab Chip 13(2013) 4583. [32] G. Gaal, M. Mendes, T.P. de Almeida, M.H. Piazzetta, Â.L. Gobbi, A. Riul, V. Rodrigues, Simplified fabrication of integrated microfluidic devices using fused deposition modeling 3D printing, Sensors Actuators B Chem. 242(2017) 35-40. [33] N.H. Moreira, A.L.D.J. de Almeida, M.H. de Oliveira Piazzeta, D.P. de Jesus, A. Deblire, A.L. Gobbi, J.A. da Silva, Fabrication of a multichannel PDMS/glass analytical microsystem with integrated electrodes for amperometric detection, Lab Chip 9(2009) 115-121. [34] J. Norman, R.D. Madurawe, C.M.V. Moore, M.A. Khan, A. Khairuzzaman, A new chapter in pharmaceutical manufacturing:3D-printed drug products, Adv. Drug Deliv. Rev. 108(2017) 39-50. [35] J. Goole, K. Amighi, 3D printing in pharmaceutics:a new tool for designing customized drug delivery systems, Int. J. Pharm. 499(2016) 376-394. [36] S. Glatzel, M. Hezwani, P.J. Kitson, P.S. Gromski, S. Schürer, L. Cronin, A portable 3D printer system for the diagnosis and treatment of multidrug-resistant Bacteria, Chem 1(2016) 494-504. [37] Y. Zhang, S. Ge, J. Yu, Chemical and biochemical analysis on lab-on-a-chip devices fabricated using three-dimensional printing, Trends Anal. Chem. 85(2016) 166-180. [38] A.K. Au, W. Huynh, L.F. Horowitz, A. Folch, 3D-printed microfluidics, Angew. Chem. Int. Ed. 55(2016) 3862-3881. [39] N. Battacharjee, A. Urrios, S. Kang, A. Folch, The upcoming 3D-printig revolution in microfluidics, Lab Chip 16(2016) 1720-1742. [40] Y. He, F. Yang, H. Zhao, Q. Gao, B. Xia, J. Fu, Research on the printability of hydrogels in 3D bioprinting, Sci. Rep. 6(2016), 29977. https://doi.org/10.1038/srep29977. [41] A.A. Yazdi, A. Popma, W. Wong, T. Nguyen, Y. Pan, J. Xu, 3D printing:an emerging tool for novel microfludics and lab-on-a-chip application, Microfluid. Nanofluid. (2016) 20-50. [42] U.M. Dilberoglu, B. Gharehpapagh, U. Yaman, M. Dolen, The role of additive manufacturing in the era of industry 4.0, Procedia Manuf. 11(2017) 545-554. [43] Y. Hwang, O.H. Paydar, R.N. Candler, 3D printed molds for non-planar PDMS microfluidics channels, Sensors Actuators A 226(2015) 137-142. [44] B. Aghel, M. Rahimi, A. Sepahvand, M. Alitabar, H.R. Ghasempour, Using a wire coil insert for biodiesel production enhancement in a microreactor, Energy Convers. Manag. 84(2014) 541-549. [45] A.V. Veličković, O.S. Stamenković, Z.B. Todorović, V.B. Veljković, Application of the full factorial design to optimization of base-catalyzed sunflower oil ethanolysis, Fuel 104(2013) 433-442. [46] G. Anastopoulos, Y. Zannikou, S. Stournas, S. Kalligeros, Transesterification of vegetable oils with ethanol and characterization of the key fuel properties of ethyl esters, Energies 2(2009) 362-376. [47] H.S. Santana, D.S. Tortola, E.M. Reis, J.L. Silva Jr., O.P. Taranto, Biodiesel synthesis in micromixer with static elements, Energy Convers. Manag. 141(2017) 28-39. |