[1] M.S. Kamal, S.A. Razzak, M.M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs)-a review, Atmos. Environ. 140(2016) 117-134. [2] J.Y. Zheng, Y.F. Yu, Z.W. Mo, Z. Z, X.M. Wang, S.S. Yin, K. Peng, Y. Yang, X.Q. Feng, H.H. Cai, Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China, Sci. Total Environ. 456-457(2013) 127-136. [3] X. Chen, Z.L. Zhao, Y. Zhou, Q.L. Zhu, Z.Y. Pan, H.F. Lu, A facile route for spraying preparation of Pt/TiO2 monolithic catalysts toward VOCs combustion, Appl. Catal. A Gen. 566(2018) 190-199. [4] B. Srinivasan, S. Palanki, D. Bonvin, Dynamic optimization of batch processes:I. Characterization of the nominal solution, Comput. Chem. Eng. 27(2003) 1-26. [5] C.M. Shu, P.J. Wen, Investigation of the flammability zone of o-xylene under various pressures and oxygen concentrations at 150℃, J. Loss Prev. Process Ind. 15(2002) 253-263. [6] H.Y. Zhao, X.A. Lu, Y. Wang, B. Sun, X.H. Wu, H.F. Lu, Effects of Additives on Sucrosederived Activated Carbon Microspheres Synthesized by Hydrothermal Carbonization, Chemical Routes to Materials 52(2017) 10787-10799. [7] Y. Ueno, A. Tate, O. Niwa, H.S. Zhou, T. Yamada, I. Honma, High benzene selectivity of mesoporous silicate for BTX gas sensing microfluidic devices, Anal. Bioanal. Chem. 382(2005) 804-809. [8] C. Yuan, H.Y. Liu, Z.K. Zhang, H.F. Lu, Q.L. Zhu, Y.F. Chen, Alkali-metal-modified ZSM-5 zeolites for improvement of catalytic dehydration of lactic acid to acrylic acid, Chin. J. Catal. 36(2015) 1861-1866. [9] H.N. Wang, M. Tang, K. Zhang, D.F. Cai, W.Q. Huang, R.Y. Chen, C.Z. Yu, Functionalized hollow siliceous spheres for VOCs removal with high efficiency and stability, J. Hazard. Mater. 268(2014) 115-123. [10] X.Y. Zhang, B. Gao, A.E. Creamer, C.C. Cao, Y.C. Li, Adsorption of VOCs onto engineered carbon materials:A review, J. Hazard. Mater. 338(2017) 102-123. [11] K. Urashima, J.S. Chang, Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology, IEEE Trans. Dielectr. Electr. Insul. 7(2000) 602-614. [12] B. Ozturk, D. Yilmaz, Absorptive removal of volatile organic compounds from flue gas streams, Process. Saf. Environ. Prot. 84(2006) 391-398. [13] E. Dumont, G. Darracq, A. Couvert, C. Couriol, A. Amrane, D. Thomas, Y. Andrès, P.L. Cloirec, Hydrophobic VOC absorption in two-phase partitioning bioreactors; influence of silicone oil volume fraction on absorber diameter, Chem. Eng. Sci. 71(2012) 146-152. [14] R. Tatin, L. Moura, N. Dietrich, S. Baig, G. Hébrard, Physical absorption of volatile organic compounds by spraying emulsion in a spray tower:Experiments and modelling, Chem. Eng. Res. Des. 104(2015) 409-415. [15] F. Heymes, P.M. Demoustier, F. Charbit, J.L. Fanlo, P. Moulin, Recovery of toluene from high temperature boiling absorbents by pervaporation, J. Membr. Sci. 284(2006) 145-154. [16] F. Cotte, J.L. Fanlo, P.L. Cloirec, P. Escobar, Absorption of odorous molecules in aqueous solutions of polyethylene glycol, Environ. Technol. 16(1995) 127-136. [17] B. Park, G. Hwang, S. Haam, C. Lee, L.S. Ahn, K. Lee, Absorption of a volatile organic compound by a jet loop reactor with circulation of a surfactant solution:Performance evaluation, J. Hazard. Mater. 153(2008) 735-741. [18] W.L. Wang, X.L. Ma, S. Grimes, H.F. Cai, M. Zhang, Study on the absorbability, regeneration characteristics and thermal stability of ionic liquids for VOCs removal, Chem. Eng. J. 328(2017) 353-359. [19] K.R. Seddon, Ionic liquids:A taste of the future, Nat. Mater. 2(2003) 363-365. [20] G. Quijano, A. Couvert, A. Amrane, G. Darracq, C. Couriol, P.L. Cloirec, L. Paquin, D. Carrié, Toxicity and biodegradability of ionic liquids:New perspectives towards whole-cell biotechnological applications, Chem. Eng. J. 174(2011) 27-32. [21] C.F. Poole, S.K. Poole, Extraction of organic compounds with room temperature ionic liquids, J. Chromatogr. A 1217(2010) 2268-2286. [22] P.F. Zhang, H.F. Lu, Y. Zhou, L. Zhang, Z.L. Wu, H.L. Shi, Q.L. Zhu, Y.F. Chen, S. Dai, Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons, Nat. Commun. 6(2015) 8846. [23] G. Quijano, A. Couvert, A. Amrane, G. Darracq, C. Couriol, P.L. Cloirec, L. Paquin, D. Carrié, Potential of ionic liquids for VOC absorption and biodegradation in multiphase systems, Chem. Eng. Sci. 66(2011) 2707-2717. [24] J. Jacquemin, M.F.C. Gomes, P. Husson, V. Majer, Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric, J. Chem. Thermodyn. 38(2006) 490-502. [25] J. Kumełan, A.P.S. Kamps, D. Tuma, G. Maurer, Solubility of the single gases methane and xenon in the ionic liquid[bmim] [CH3SO4], J. Chem. Eng. Data 52(2007) 2319-2324. [26] D. Camper, C. Becker, C. Koval, R. Noble, Diffusion and solubility measurements in room temperature ionic liquids, Ind. Eng. Chem. Res. 45(2006) 445-450. [27] D. Camper, C. Becker, C. Koval, R. Noble, Bulk-fluid solubility and membrane feasibility of Rmim-based room-temperature ionic liquids, Ind. Eng. Chem. Res. 45(2006) 6279-6283. [28] R. Condemarin, P. Scovazzo, Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium RTIL data, Chem. Eng. J. 147(2009) 51-57. [29] T. Nguyen, A.S.R. Castillo, S. Guihéneuf, P.F. Biard, L. Paquin, A. Amrane, A. Couvert, Toluene degradation in a two-phase partitioning bioreactor involving a hydrophobic ionic liquid as a non-aqueous phase liquid, Int. Biodeterior. Biodegrad. 117(2017) 31-38. [30] V. Najdanovic-Visak, A. Rodriguez, Z.P. Visak, J.N. Rosa, C.A.M. Afonso, M.N. Ponte, L.P.N. Rebelo, Co-solvent effects in LLE of 1-hydroxyethyl-3-methylimidazolium based ionic liquids plus 2-propanol plus dichloromethane or 1,2-dichloroethane, Fluid Phase Equilib. 254(2007) 35-41. [31] E. Dumont, Y. Andres, P.L. Cloirec, Effect of organic solvents on oxygen mass transfer in multiphase systems:Application to bioreactors in environmental protection, Biochem. Eng. J. 30(2006) 245-252. [32] B.H. Huang, Y.F. Wang, K. Mang, Y.X. Fang, B.L. Zhou, Synthesis of pyrrolidonium acidic ionic liquids and their catalytic activity for esterification of acetic acid and butanol, Chin. J. Catal. 28(2007) 743-748. [33] M.D. Vuong, A. Couvert, C. Couriol, A. Amrane, P.L. Cloirec, C. Renner, Determination of the Henry's constant and the mass transfer rate of VOCs in solvents, Chem. Eng. J. 150(2009) 426-430. [34] Q.W. Yang, D. Xu, Z.B. Bao, Y. Zhang, B.G. Su, Q.L. Ren, H.B. Xing, Design and screening of ionic liquids for C2H2/C2H4 separation by COSMO-RS and experiments, AIChE J. (6) (2015) 2016-2027. [35] Y. Zhang, X. Zhao, Z.Q.W. Yang, Z.G. Zhang, Q.L. Ren, H.B. Xing, Long-chain carboxylate ionic liquids combining high solubility and low viscosity for light hydrocarbon separations, Ind. Eng. Chem. Res. 56(2017) 7336-7344. [36] Q.W. Yang, Z.Q. Zhang, X.G. Sun, Y.S. Hu, H.B. Xing, S. Dai, Ionic liquids and derived materials for lithium and sodium batteries, Chem. Soc. Rev. 47(2018) 2020-2064. [37] J. Bedia, E. Ruiz, J.D. Riva, V.R. Ferro, J. Palomar, J.J. Rodriguez, Optimized ionic liquids for toluene absorption, AIChE J. 59(2013) 1648-1656. [38] M. Sevilla, A.B. Fuertes, Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides, Chemistry Weinheim Bergstr. Germ. 15(2009) 4195-4203. |