[1] S.G. Samuelsen, Brouwer, A.M. Vardakas, D.J. Holdeman, Experimental and modeling investigation of the effect of air preheat on the formation of NOx in an RQL combustor, Heat Mass Transf. 49(2013) 219-231. [2] C.X. Thong, B.B. Dally, C.H. Birzer, P.A. Kalt, E.R. Hassan, An experimental study on the near flow field of a round jet affected by upstream multi-lateral side-jet, Exp. Thermal Fluid Sci. 82(2017) 198-211. [3] X. Yu, T. Chen, Q. Zhang, T. Wang, Mixing behaviors of jets in cross-flow for heat recovery of partial oxidation process, Int. J. Chem. React. Eng. 15(2016). [4] J. Kroll, W. Sowa, G. Samuelsen, J.D. Holdeman, Optimization of orifice geometry for crossflow mixing in a cylindrical duct, J. Propuls. Power 16(2000) 929-938. [5] M. Ktalkherman, I. Namyatov, Pyrolysis of hydrocarbons in a heat-carrier flow with fast mixing of the components, Combust. Explos. Shock Waves 44(2008) 529-534. [6] D. Gstoehl, A. Brambilla, L.O. Schunk, A. Steinfeld, A quenching apparatus for the gaseous products of the solar thermal dissociation of ZnO, J. Mater. Sci. 43(2008) 4729-4736. [7] V.A. Samokhin, V.N. Alekseev, A.S. Kornev, A.M. Sinaiskii, V. Yu Blagoveschenskiy, Tungsten carbide and vanadium carbide nanopowders synthesis in DC plasma reactor, Plasma Chem. Plasma Process. 33(2013) 605-616. [8] E. Gavi, D.L. Marchisio, A.A. Barresi, CFD modelling and scale-up of Confined Impinging Jet Reactors, Chem. Eng. Sci. 62(2007) 2228-2241. [9] D.L. Marchisio, L. Rivautella, A.A. Barresi, Design and scale-up of chemical reactors for nanoparticle precipitation, AIChE J. 52(2006) 1877-1887. [10] M. Hosni, S. Farhat, M. Ben Amar, A. Kanaev, N. Jouini, I. Hinkov, Mixing strategies for zinc oxide nanoparticlesynthesis via a polyol process, AIChE J.61(2015)1708-1721. [11] B.K. Johnson, R.K. Prud'homme, Chemical processing and micromixing in confined impinging jets, AIChE J. 49(2003) 2264-2282. [12] D.Y. Tang, J.J. Ou, R.H. Heist, S.H. Chen, A.J. Dukat, A.C. Eberle, Dynamics of fluid mixing induced at a T-junction. 3. Experimental characterization and fluid dynamic computation of temperature distribution in space, Ind. Eng. Chem. Res. 32(1993) 1727-1733. [13] L. Forney, T. Kwon, Efficient single-jet mixing in turbulent tube flow, AIChE J. 25(1979) 623-630. [14] W.F. Li, K.J. Du, G.S. Yu, H.F. Liu, F.C. Wang, Experimental study of flow regimes in three-dimensional confined impinging jets reactor, AIChE J. 60(2014) 3033-3045. [15] Z.-h. Shi, K.-j. Du, H.-f. Liu, F.-c. Wang, Experimental study of mixing enhancement of viscous liquids in confined impinging jets reactor at low jet Reynolds numbers, Chem. Eng. Sci. 138(2015) 216-226. [16] G. Pan, H. Meng, Experimental study of turbulent mixing in a tee mixer using PIV and PLIF, AIChE J. 47(2001) 2653-2665. [17] C.X. Thong, P.A. Kalt, B.B. Dally, C.H. Birzer, Flow dynamics of multi-lateral jets injection into a round pipe flow, Exp. Fluids 56(2015) 15. [18] M. Hatch, W. Sowa, G. Samulersen, J. Holdeman, Geometry and flow influences on jet mixing in a cylindrical duct, J. Propuls. Power 11(1995) 393-402. [19] S. Sundararaj, V. Selladurai, Numerical and experimental study on jet trajectories and mixing behavior of venturi-jet mixer, J. Fluids Eng. 132(2010), 101104. [20] L. Forney, H. Lee, Optimum dimensions for pipeline mixing at a T-junction, AIChE J. 28(1982) 980-987. [21] T. Maruyama, S. Suzuki, T. Mizushina, Pipeline mixing between two fluid streams meeting at a T-junction, Int. Chem. Eng. 21(1981) 205-212. [22] S.J. Wang, A. Mujumdar, Three-dimensional analysis of flow and mixing characteristics of a novel in-line opposing-jet mixer, Ind. Eng. Chem. Res. 46(2007) 632-642. [23] E. Kartaev, V. Emel'Kin, M. Ktalkherman, V. Kuz'Min, S. Aul'Chenko, S. Vashenko, Analysis of mixing of impinging radial jets with crossflow in the regime of counter flow jet formation, Chem. Eng. Sci. 119(2014) 1-9. [24] E. Kartaev, V. Emelkin, M. Ktalkherman, S. Aulchenko, S. Vashenko, V. Kuzmin, Formation of counter flow jet resulting from impingement of multiple jets radially injected in a crossflow, Exp. Thermal Fluid Sci. 68(2015) 310-321. [25] L. Forney, Z. Feng, X. Wang, Jet trajectories of transverse mixers at arbitrary angle in turbulent tube flow, Chem. Eng. Res. Des. 77(1999) 754-758. [26] L.J. Forney, N. Nafia, H.X. Vo, Optimum jet mixing in a tubular reactor, AIChE J. 42(1996) 3113-3122. [27] A. Nirmolo, H. Woche, E. Specht, Temperature homogenization of reactive and nonreactive flows after radial jet injections in confined cross-flow, Eng. Appl. Comput. Fluid Mech. 2(2008) 85-94. [28] Y. Li, G. Xie, T. Lei, C. Bao, L. Tian, Y. Hou, A CFD model for gas uniform distribution in turbulent flow for the production of titanium pigment in chloride process, Chin. J. Chem. Eng. 24(2016) 749-756. [29] C. Stemich, L. Spiegel, Characterization and quantification of the quality of gas flow distributions, Chem. Eng. Res. Des. 89(2011) 1392-1396. [30] L. Zhang, H. Zhou, X. Li, Y. Du, CFD analysis of gas distributor in packed column-Prediction of gas flow and effect of tower internals geometry structure, Trans. Tianjin Univ. 10(2004) 270-274. [31] A. Boje, J. Akroyd, S. Sutcliffe, J. Edwards, M. Kraft, Detailed population balance modelling of TiO2 synthesis in an industrial reactor, Chem. Eng. Sci. 164(2017) 219-231. [32] J. Akroyd, A.J. Smith, R. Shirley, L.R. McGlashan, M. Kraft, A coupled CFD-population balance approach for nanoparticle synthesis in turbulent reacting flows, Chem. Eng. Sci. 66(2011) 3792-3805. [33] A.E. Farooqui, M.A. Habib, H.M. Badr, R. Ben-Mansour, Modeling of ion transport reactor for oxy-fuel combustion, Int. J. Energ. Res. 37(2013) 1265-1279. [34] M. Terashima, R. Goel, K. Komatsu, H. Yasui, H. Takahashi, Y. Li, T. Noike, CFD simulation of mixing in anaerobic digesters, Bioresour. Technol. 100(2009) 2228-2233. [35] S. Soltani, C. Wang-Hansen, R. Andersson, B. Andersson, CFD characterization of monolithic reactors for kinetic studies, Can. J. Chem. Eng. 92(2014) 1570-1578. [36] P. Manjula, P. Kalaichelvi, C. Shanawaskhan, K. Dheenathayalan, Effect of radial angle on mixing time for a double jet mixer, Asia Pac. J. Chem. Eng. 5(2010) 544-551. [37] J. Gao, X. Lan, Y. Fan, J. Chang, G. Wang, C. Lu, C. Xu, CFD modeling and validation of the turbulent fluidized bed of FCC particles, AIChE J. 55(2009) 1680-1694. [38] R.H. West, G.J. Beran, W.H. Green, M. Kraft, First-principles thermochemistry for the production of TiO2 from TiCl4, J. Phys. Chem. A 111(2007) 3560-3565. [39] M.S. Wooldridge, Gas-phase combustion synthesis of particles, Prog. Energ. Combust. 24(1998) 63. [40] S. Asano, T. Maki, K. Mae, Evaluation of mixing profiles for a new micromixer design strategy, AIChE J. 62(2016) 1154-1161. [41] Z.W. Li, W.X. Huai, Z.D. Qian, Study on the flow field and concentration characteristics of the multiple tandem jets in crossflow, Sci. China Technol. Sci. 55(2012) 2778-2788. [42] Z. Lu, C. Li, D. Cong, S. Zhang, H. Liu, Y. Hu, Study on jet mixing characters in the oxidation reactor for titanium dioxide powder production by chloride process, Chem. Eng. 29(2001) 25-28. [43] A.W. Nienow, M. Edwards, N. Harnby, Mixing in the Process Industries, ButterworthHeinemann, 1997. |