中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (12): 2845-2856.DOI: 10.1016/j.cjche.2019.03.028
• Reviews • 下一篇
Shuhong Li1, Shuang Zhao1, Siliang Yan1, Yiting Qiu2, Chunfeng Song2, Yang Li3, Yutaka Kitamura4
收稿日期:
2018-11-28
修回日期:
2019-03-12
出版日期:
2019-12-28
发布日期:
2020-03-17
通讯作者:
Chunfeng Song
基金资助:
Shuhong Li1, Shuang Zhao1, Siliang Yan1, Yiting Qiu2, Chunfeng Song2, Yang Li3, Yutaka Kitamura4
Received:
2018-11-28
Revised:
2019-03-12
Online:
2019-12-28
Published:
2020-03-17
Contact:
Chunfeng Song
Supported by:
摘要: Microalgae have been considered as an efficient microorganism for wastewater treatment with simultaneously bioenergy and high value-added compounds production. However, the high energy cost associated with complicated biorefinery (e.g. microalgae cultivation, harvesting, drying, extraction, conversion, and purification) is a critical challenge that inhibits its large-scale application. Among different nutrition (e.g. carbon, nitrogen and phosphorous) sources, food processing wastewater is a relative safe and suitable one for microalgae cultivation due to its high organic content and low toxicity. In this review, the characteristic of different food wastewater is summarized and compared. The potential routes of value-added products (i.e. biofuel, pigment, polysaccharide, and amino acid) production along with wastewater purification are introduced. The existing challenges (e.g. biorefinery cost, efficiency and mechanism) of microalgal-based wastewater treatment are also discussed. The prospective of microalgae-based food processing wastewater treatment strategies (such as microalgae-bacteria consortium, poly-generation of bioenergy and value-added products) is forecasted. It can be observed that food wastewater treatment by microalgae could be a promising strategy to commercially realize waste source reduce, conversion and reutilization.
Shuhong Li, Shuang Zhao, Siliang Yan, Yiting Qiu, Chunfeng Song, Yang Li, Yutaka Kitamura. Food processing wastewater purification by microalgae cultivation associated with high value-added compounds production-A review[J]. 中国化学工程学报, 2019, 27(12): 2845-2856.
Shuhong Li, Shuang Zhao, Siliang Yan, Yiting Qiu, Chunfeng Song, Yang Li, Yutaka Kitamura. Food processing wastewater purification by microalgae cultivation associated with high value-added compounds production-A review[J]. Chinese Journal of Chemical Engineering, 2019, 27(12): 2845-2856.
[1] J. Aschemann-Witzel, Waste not, want not, emit less, Science 352(2016) 408-409. [2] J.W. Levis, M.A. Barlaz, N.J. Themelis, et al., Assessment of the state of food waste treatment in the United States and Canada, Waste Manag. 30(2010) 1486-1494. [3] M.J. Boland, A.N. Rae, J.M. Vereijken, et al., The future supply of animal-derived protein for human consumption, Trends Food Sci. Technol. 29(2013) 62-73. [4] A.Y. Hoekstra, The hidden water resource use behind meat and dairy, Anim. Front. 2(2012) 3-8. [5] M.M. Mekonnen, A.Y. Hoekstra, In the Green, Blue and Gray Water Footprint of Farm Animals and Animal Products, UNESCO-IHE Institute for Water Education, 2010. [6] Food and Agriculture Organization:databases & publications, http://www.fao.org/faostat/en/#data/QD,Accessed date:1 November 2017. [7] M.K. Arantes, H.J. Alves, R. Sequinel, et al., Treatment of brewery wastewater and its use for biological production of methane and hydrogen, Int. J. Hydrog. Energy 42(2017) 26243-26256. [8] C.F. Bustillo-Lecompte, M. Mehrvar, Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry:a review on trends and advances, J. Environ. Manag. 161(2015) 287-302. [9] Y.E. Meneses, J. Stratton, R.A. Flores, Water reconditioning and reuse in the food processing industry:current situation and challenges, Trends Food Sci. Technol. 61(2017) 72-79. [10] D. Cecconet, D. Molognoni, A. Callegari, et al., Agro-food industry wastewater treatment with microbial fuel cells:energetic recovery issues, Int. J. Hydrog. Energy 43(2018) 500-511. [11] M. Ghimpusan, G. Nechifor, A. Nechifor, et al., Case studies on the physicalchemical parameters' variation during three different purification approaches destined to treat wastewaters from food industry, J. Environ. Manag. 203(2017) 811-816. [12] F.J. Fernandez, M.C. Castro, J. Villasenor, et al., Agro-food wastewaters as external carbon source to enhance biological phosphorus removal, Chem. Eng. J. 166(2011) 559-567. [13] C. Sartorius, J. von Horn, F. Tettenborn, Phosphorus recovery from wastewaterexpert survey on present use and future potential, Water Environ. Res. 84(2012) 313-322. [14] C. Huang, M. Luo, X. Chen, et al., Recent advances and industrial viewpoint for biological treatment of wastewaters by oleaginous microorganisms, Bioresour. Technol. 232(2017) 398-407. [15] E. Metcalf, H. Eddy, Wastewater Engineering:Treatment and Reuse, MeGraw Hill, New York, 2003. [16] H. Su, Y. Zhang, C. Zhang, et al., Cultivation of Chlorella pyrenoidosa in soybean processing wastewater, Bioresour. Technol. 102(2011) 9884-9890. [17] A. Guldhe, S. Kumari, L. Ramanna, et al., Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation, J. Environ. Manag. 203(2017) 299-315. [18] T. Cai, S.Y. Park, Y. Li, Nutrient recovery from wastewater streams by microalgae:status and prospects, Renew. Sust. Energ. Rev. 19(2013) 360-369. [19] D.Y. Shin, H.U. Cho, J.C. Utomo, et al., Biodiesel production from Scenedesmus bijuga grown in anaerobically digested food wastewater effluent, Bioresour. Technol. 184(2015) 215-221. [20] M. Bui, M. Fajardy, N. Mac Dowell, Bio-energy with carbon capture and storage (BECCS):opportunities for performance improvement, Fuel 213(2018) 164-175. [21] N. Pour, P.A. Webley, P. Cook, Potential for using municipal solid waste as a resource for bioenergy with carbon capture and storage (BECCS), Int. J. Greenh. Gas Control 68(2018) 1-15. [22] B. Sarkar, P.P. Chakrabarti, A. Vijaykumar, et al., Wastewater treatment in dairy industries-possibility of reuse, Desalination 195(2006) 141-152. [23] V. Sethu, V.A. Viramuthu, Handbook of Water and Energy Management in Food Processing. Chapter 23:Water Recycling in the Food Industry, 2008647-662. [24] S.S. Costa, A.L. Miranda, B.B. Andrade, et al., Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae, Int. J. Biol. Macromol. 116(2018) 552-562. [25] M.S. Kim, D.Y. Lee, D.H. Kim, Continuous hydrogen production from tofu processing waste using anaerobic mixed microflora under thermophilic conditions, Int. J. Hydrog. Energy 36(2011) 8712-8718. [26] X. Li, K. Xu, W. Fu, et al., Simultaneous in-situ excess sludge reduction and removal of organic carbon and nitrogen by a pilot-scale continuous aerobic-anaerobic coupled (CAAC) process for deeply treatment of soybean wastewater, Biochem. Eng. J. 85(2014) 30-37. [27] G.F. Zhu, J.Z. Li, W. Peng, et al., The performance and phase separated characteristics of an anaerobic baffled reactor treating soybean protein processing wastewater, Bioresour. Technol. 99(2008) 8027-8033. [28] D. Karadag, O.E. Köroğlu, B. Ozkaya, et al., A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater, Process Biochem. 50(2015) 262-271. [29] A.A. Chatzipaschali, A.G. Stamatis, Biotechnological utilization with a focus on anaerobic treatment of cheese whey:current status and prospects, Energies 5(2012) 3492-3525. [30] V. Perna, E. Castello, J. Wenzel, et al., Hydrogen production in an upflow anaerobic packed bed reactor used to treat cheese whey, Int. J. Hydrog. Energy 38(2013) 54-62. [31] J.C. de Carvalho, I.A. Borghetti, L.C. Cartas, et al., Biorefinery integration of microalgae production into cassava processing industry:potential and perspectives, Bioresour. Technol. 247(2018) 1165-1172. [32] P. Pandey, V.N. Shinde, R.L. Deopurkar, et al., Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery, Appl. Energy 168(2016) 706-723. [33] T.Q. Tung, N. Miyata, K. Iwahori, Growth of Aspergillus oryzae during treatment of cassava starch processing wastewater with high content of suspended solids, J. Biosci. Bioeng. 97(2004) 329-335. [34] A.M. Díez, E. Rosales, M.A. Sanromán, M. Pazos, Assessment of LED-assisted electroFenton reactor for the treatment of winery wastewater, Chem. Eng. J. 310(2017) 399-406. [35] M.I. Litaor, N. Meir-Dinar, B. Castro, et al., Treatment of winery wastewater with aerated cells mobile system, Environ. Nanotechnol. Monit. Manag. 4(2015) 17-26. [36] J.P. Ombregt, M. Bambridge, Meat processing:green energy from wastewater, Filtr. Sep. 49(2012) 44-45. [37] P.W. Gerbens-Leenes, M.M. Mekonnen, A.Y. Hoekstra, The water footprint of poultry, pork and beef:a comparative study in different countries and production systems, Water Resour. Ind. s1-2(2013) 25-36. [38] A. Sroka, W. Kaminski, J. Bohdziewicz, Biological treatment of meat industry wastewater, Desalination 162(2004) 85-91. [39] J.M. Ochando-Pulido, S. Pimentel-Moral, V. Verardo, A. Martinez-Ferez, A focus on advanced physico-chemical processes for olive mill wastewater treatment, Sep. Purif. Technol. 179(2017) 161-174. [40] J. Beltrán-Heredia, J. Torregrosa, J. Garcia, et al., Degradation of olive mill wastewater by the combination of Fenton's reagent and ozonation processes with an aerobic biological treatment, Water Sci. Technol. 44(2001) 103-108. [41] M.A. Sampaio, M.R. Gonçalves, I.P. Marques, Anaerobic digestion challenge of raw olive mill wastewater, Bioresour. Technol. 102(2011)(10810-10808). [42] H.Q. Yu, Z.H. Hu, T.Q. Hong, G.W. Gu, Performance of an anaerobic filter treating soybean processing wastewater with and without effluent recycle, Process Biochem. 38(2002) 507-513. [43] B. Acl, F.M. Lajolo, M.I. Genovese, Influence of temperature, pH and ionic strength on the production of isoflavone-rich soy protein isolates, Food Chem. 98(2006) 757-766. [44] C.H. Tang, C.Y. Ma, Effect of high pressure treatment on aggregation and structural properties of soy protein isolate, LWT Food Sci. Technol. 42(2009) 606-611. [45] A.V. Qasim, A.V. Mane, Characterization and treatment of selected food industrial effluents by coagulation and adsorption techniques, Water Resour. Ind. 4(2013) 1-12. [46] A.N. Hassan, B.K. Nelson, Invited review:anaerobic fermentation of dairy food wastewater, J. Dairy Sci. 95(2012) 6188-6203. [49] G.S. Simate, J. Cluett, S.E. Iyuke, et al., The treatment of brewery wastewater for reuse:state of the art, Desalination 273(2011) 235-247. [50] H. Chen, S. Chang, Q. Guo, et al., Brewery wastewater treatment using an anaerobic membrane bioreactor, Biochem. Eng. J. 105(2015) 321-331. [51] T. Kierath, C. Wang, The Global Wine Industry, Morgan Stanley Research, 2013. [52] M.S. Lucas, J.A. Peres, G.L. Puma, Treatment of winery wastewater by ozonebased advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilotscale bubble column reactor and process economics, Sep. Purif. Technol. 72(2010) 235-241. [53] L.A. Ioannou, G.L. Puma, D. Fatta-Kassinos, Treatment of winery wastewater by physicochemical, biological and advanced processes:a review, J. Hazard. Mater. 286(2015) 343-368. [47] X. Tan, H. Chu, Y. Zhang, et al., Chlorella pyrenoidosa cultivation using anaerobic digested starch processing wastewater in an airlift circulation photobioreactor, Bioresour. Technol. 170(2014) 538-548. [48] P. Kaewkannetra, T. Imai, F.J. Garcia-Garcia, T.Y. Chiu, Cyanide removal from cassava mill wastewater using Azotobactor vinelandii TISTR 1094 with mixed microorganisms in activated sludge treatment system, J. Hazard. Mater. 172(2009) 224-228. [54] O.N. Tsolcha, A.G. Tekerlekopoulou, C.S. Akratos, et al., Biotreatment of raisin and winery wastewaters and simultaneous biodiesel production using a Leptolyngbya -based microbial consortium, J. Clean. Prod. 148(2017) 185-193. [55] M.M. Mekonnen, A.Y. Hoekstra, A global assessment of the water footprint of farm animal products, Ecosystems 15(2012) 401-415. [56] L. Bouwman, K.K. Goldewijk, K.W. Van Der Hoek, et al., Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period, Proc. Natl. Acad. Sci. U. S. A. 110(2013) 20882-20887. [57] European Commission, CIVIC Consulting, Study on the stunning/killing practices in slaughterhouses and their economic, social and environmental consequences, Final Report-Part I. Red Meat, 25 June 2007. [58] E. León-Becerril, J.E. García-Camacho, J.D. Real-Olvera, A. López-López, Performance of an upflow anaerobic filter in the treatment of cold meat industry wastewater, Process. Saf. Environ. Prot. 102(2016) 385-391. [59] S.N.H.A. Bakar, H.A. Hasan, A.W. Mohammad, et al., A review of moving-bed biofilm reactor technology for palm oil mill effluent treatment, J. Clean. Prod. 171(2018) 1532-1545. [60] J.D. Bala, J. Lalung, N. Ismail, Studies on the reduction of organic load from palm oil mill effluent (POME) by bacterial strains, Int. J. Recycl. Org. Waste Agric. 4(2015) 1-10. [61] P. Paraskeva, E. Diamadopoulos, Technologies for olive mill wastewater (OMW) treatment:a review, J. Chem. Technol. Biotechnol. 81(2006) 1475-1485. [62] M. Niaounakis, C.P. Halvadakis, Olive processing waste management literature review and patent survey, Elsevier, Amsterdam, 2005. [63] Y. Zhang, L. Yan, X. Qiao, et al., Integration of biological method and membrane technology in treating palm oil mill effluent, J. Environ. Sci. 20(2008) 558-564. [64] S.J. Santosa, Palm oil boom in Indonesia:from plantation to downstream products and biodiesel, Clean 36(2008) 453-465. [65] S. Hegde, J.S. Lodge, T.A. Trabold, Characteristics of food processing wastes and their use in sustainable alcohol production, Renew. Sust. Energ. Rev. 81(2017) 510-523. [66] Y. Zhang, H. Su, Y. Zhong, et al., The effect of bacterial contamination on the heterotrophic cultivation of Chlorella pyrenoidosa in wastewater from the production of soybean products, Water Res. 46(2012) 5509-5516. [67] K. Chokshi, I. Pancha, A. Ghosh, S. Mishra, Microalgal biomass generation by phycoremediation of dairy industry wastewater:an integrated approach towards sustainable biofuel production, Bioresour. Technol. 221(2016) 455-460. [68] S. Tejedor-Sanz, J.M. Ortiz, A. Esteve-Núñez, Merging microbial electrochemical systems with electrocoagulation pretreatment for achieving a complete treatment of brewery wastewater, Chem. Eng. J. 330(2017) 1068-1074. [66] I.K. Muniraj, L. Xiao, Z. Hu, X. Zhan, J. Shi, Microbial lipid production from potato processing wastewater using oleaginous filamentous fungi Aspergillus oryzae, Water Res. 47(2013) 3477-3483. [69] M. Galib, E. Elbeshbishy, R. Reid, et al., Energy-positive food wastewater treatment using an anaerobic membrane bioreactor (AnMBR), J. Environ. Manag. 182(2016) 477-485. [70] A. Alver, E. Baştürk, A. Kılıç, et al., Use of advance oxidation process to improve the biodegradability of olive oil mill effluents, Process. Saf. Environ. Prot. 98(2015) 319-324. [71] H. Zheng, M. Liu, Q. Lu, et al., Balancing carbon/nitrogen ratio to improve nutrients removal and algal biomass production in piggery and brewery wastewaters, Bioresour. Technol. 249(2018) 479-486. [72] X.B. Tan, X.C. Zhao, Y.L. Zhang, et al., Enhanced lipid and biomass production using alcohol wastewater as carbon source for Chlorella pyrenoidosa cultivation in anaerobically digested starch wastewater in outdoors, Bioresour. Technol. 247(2018) 784-793. [73] D.R. Hirzel, K. Steenwerth, S.J. Parikh, et al., Impact of winery wastewater irrigation on soil, grape and wine composition, Agric. Water Manag. 180(2017) 178-189. [74] Q. Lu, W. Zhou, M. Min, et al., Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production, Bioresour. Technol. 198(2015) 189-197. [75] C.A. García, G. Hodaifa, Real olive oil mill wastewater treatment by photo-Fenton system using artificial ultraviolet light lamps, J. Clean. Prod. 162(2017) 743-753. [76] J. Vymazal, Removal of nutrients in various types of constructed wetlands, Sci. Total Environ. 380(2007) 48-65. [77] E.S. Salama, M.B. Kurade, R.A.I. Abou-Shanab, et al., Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation, Renew. Sust. Energ. Rev. 79(2017) 1189-1211. [78] R. Li, X. Li, Recovery of phosphorus and volatile fatty acids from wastewater and food waste with an iron-flocculation sequencing batch reactor and acidogenic cofermentation, Bioresour. Technol. 245(2017) 615-624. [79] V.V. Ahm, S. Bereswill, J.G. Kusters, Helicobacter pylori:Physiology and Geneticschp, 17 Ion Metabolism and Transport, ASM press, USA, 2001. [80] D.N. Long, K. Koch, D. Bolzonella, J.E. Drewes, Full scale co-digestion of wastewater sludge and food waste:bottlenecks and possibilities, Renew. Sust. Energ. Rev. 72(2017) 354-362. [81] K. Azizi, M.K. Moraveji, H.A. Najafabadi, A review on bio-fuel production from microalgal biomass by using pyrolysis method, Renew. Sust. Energ. Rev. 82(2018) 3046-3059. [82] M.A. Islam, K. Heimann, R.J. Brown, Microalgae biodiesel:current status and future needs for engine performance and emissions, Renew. Sust. Energ. Rev. 79(2017) 1160-1170. [83] C. Song, Q. Liu, N. Ji, S. Deng, J. Zhao, S. Li, Y. Kitamura, Evaluation of hydrolysisesterification biodiesel production from wet microalgae, Bioresour. Technol. 214(2016) 747-754. [84] C. Song, G. Chen, N. Ji, et al., Biodiesel production process from microalgae oil by waste heat recovery and process integration, Bioresour. Technol. 193(2015) 192-199. [85] C. Song, Q. Liu, J. Na, et al., Intensification of microalgae drying and oil extraction process by vapor recompression and heat integration, Bioresour. Technol. 207(2016) 67-75. [86] K. Takisawa, K. Kanemoto, T. Miyazaki, Y. Kitamura, Hydrolysis for direct esterification of lipids from wet microalgae, Bioresour. Technol. 144(2013) 38-43. [87] K. Takisawa, K. Kanemoto, M. Kartikawati, Y. Kitamura, Simultaneous hydrolysisesterification of wet microalgal lipid using acid, Bioresour. Technol. 149(2013) 16-21. [88] S. Nahak, G. Nahak, I. Pradhan, et al., Bioethanol from marine algae:A solution to global warming problem, J. Appl. Environ. Biol. Sci. 1(2011) 74-80. [89] K. Ullah, M. Ahmad, Sofia, V.K. Sharma, et al., Assessing the potential of algal biomass opportunities for bioenergy industry:A review, Fuel 143(2015) 414-423. [90] I. Brányiková, B. Maršálková, J. Doucha, et al., Microalgae-novel highly efficient starch producers, Biotechnol. Bioeng. 108(2011) 766-776. [91] G. Dragone, B.D. Fernandesa, A.P. Abreua, et al., Nutrient limitation as a strategy for increasing starch accumulation in microalgae, Appl. Energy 88(2011) 3331-3335. [92] J. Li, L. Ying, J.J. Cheng, et al., Biological potential of microalgae in China for biorefinery-based production of biofuels and high value compounds, New Biotechnol. 32(2015) 588-596. [93] E. Suali, R. Sarbatly, Conversion of microalgae to biofuel, Renew. Sust. Energ. Rev. 16(2012) 4316-4342. [94] A.J. Ward, D.M. Lewis, F.B. Green, Anaerobic digestion of algae biomass:a review, Algal Res. 5(2014) 204-214. [95] D. Shen, J. Yin, X. Yu, et al., Acidogenic fermentation characteristics of different types of protein-rich substrates in food waste to produce volatile fatty acids, Bioresour. Technol. 227(2017) 125-132. [96] A. Ahmad, A. Buang, A.H. Bhat, Renewable and sustainable bioenergy production from microalgal co-cultivation with palm oil mill effluent (POME):A review, Renew. Sust. Energ. Rev. 65(2016) 214-234. [97] D.P. Chynoweth, Renewable biomethane from land and ocean energy crops and organic wastes, Hort. Sci. J. 40(2005) 283-286. [98] T.Y. Wei, K.L. Lim, Y.S. Tseng, S.L.I. Chan, A review on the characterization of hydrogen in hydrogen storage materials, Renew. Sust. Energ. Rev. 79(2017) 1122-1133. [99] M. Hukla, S. Kumar, Algal growth in photosynthetic algal microbial fuel cell and its subsequent utilization for biofuels, Renew. Sust. Energ. Rev. 82(2018) 402-414. [100] R. Haron, R. Mat, T.A.T. Abdullah, R.A. Rahman, Overview on utilization of biodiesel by-product for biohydrogen production, J. Clean. Prod. 172(2018) 314-324. [101] Z. Yang, R. Guo, X. Xu, et al., Fermentative hydrogen production from lipidextracted microalgal biomass residues, Appl. Energy 88(2011) 3468-3472. [102] Y. Kawagoshi, N. Hino, A. Fujimoto, et al., Effect of seed sludge conditioning on hydrogen fermentation and pH effect on bacterial community relevant to hydrogen production, J. Biosci. Bioeng. 100(2005) 524-530. [103] D.M. Rossi, J.B. Costa, E.A. Souza, et al., Bioconversion of residual glycerol from biodiesel synthesis into 1,3-propanediol and ethanol by isolated bacteria from environmental consortia, Renew. Energy 39(2012) 223-227. [104] J. Hu, D. Nagarajan, Q. Zhang, et al., Heterotrophic cultivation of microalgae for pigment production:a review, Biotechnol. Adv. 36(2018) 54-67. [105] S.G. Venkata, M. Rajvanshi, K.B. Navish, et al., Carbon streaming in microalgae:extraction and analysis methods for high value compounds, Bioresour. Technol. 244(2017) 1304-1316. [106] C.Y. Chen, S.H. Ho, C.C. Liu, et al., Enhancing lutein production with Chlorella sorokiniana Mb-1 by optimizing acetate and nitrate concentrations under mixotrophic growth, J. Taiwan Inst. Chem. Eng. 79(2017) 88-96. [107] Z. Sun, J. Liu, X. Zeng, J. Huangfu, Y. Jiang, M. Wang, F. Chen, Protective actions of microalgae against endogenous and exogenous advanced glycation endproducts (AGEs) in human retinal pigment epithelial cells, Food Funct. 2(2011) 251-258. [108] J.H. Lin, D.J. Lee, J.S. Chang, Lutein production from biomass:marigold flowers versus microalgae, Bioresour. Technol. 184(2015) 421-428. [109] Global market insights lutein market report, https://www.gminsights.com/industryanalysis/lutein-market2016. [110] J.M. Fernándezsevilla, F.G. Acién Fernández, G.E. Molina, Biotechnological production of lutein and its applications, Appl. Microbiol. Biotechnol. 86(2010) 27-40. [111] X.M. Shi, F. Chen, Production and rapid extraction of lutein and the other lipidsoluble pigments from Chlorella protothecoides grown under heterotrophic and mixotrophic conditions, Mol. Nutr. Food Res. 43(1999) 109-113. [112] X.M. Shi, F. Chen, High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture, Biotechnol. Prog. 18(2002) 723-727. [113] R.G. Fassett, J.S. Coombes, Astaxanthin:a potential therapeutic agent in cardiovascular disease, Mar. Drugs 9(2011) 447-465. [114] K.C. Lim, F.M. Yusoff, M. Shariff, M.S. Kamarudin, Astaxanthin as feed supplement in aquatic animals, Rev. Aquac. 10(2018) 738-773. [115] R.T. Lorenz, G.R. Cysewski, Commercial potential for Haematococcus microalgae as a natural source of astaxanthin, Trends Biotechnol. 18(2000) 160-167. [116] L. Dufossé, Microbial production of food grade pigment, Food Technol. Biotechnol. 44(2006) 313-321. [117] B. Liu, P. Xu, J. Xie, X. Ge, S. Xia, C. Song, Q. Zhou, L. Miao, M. Ren, L. Pan, R. Chen, Effects of emodin and vitamin E on the growth and crowding stress of Wuchang bream (Megalobrama amblycephala), Fish Shellfish Immunol. 40(2014) 595-602. [118] S. Sekar, M. Chandramohan, Phycobiliproteins as a commodity:trends in applied research, patents and commercialization, J. Appl. Phycol. 20(2008) 113-136. [119] R. Ch, R. González, N. Ledón, D. Remirez, V. Rimbau, C-phycocyanin:a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects, Curr. Protein Pept. Sci. 4(2003) 207-216. [120] B. Fernández-Rojas, J. Hernández-Juárez, J. Pedraza-Chaverri, Nutraceutical properties of phycocyanin, J. Funct. Foods 11(2014) 375-392. [121] W. Zhao, M. Duan, X. Zhang, T. Tan, A mild extraction and separation procedure of polysaccharide, lipid, chlorophyll and protein from Chlorella spp, Renew. Energy 118(2018) 701-708. [122] C.C. Fu, T.C. Hung, J.Y. Chen, C.H. Su, W.T. Wu, Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction, Bioresour. Technol. 101(2010) 8750-8754. [123] T. Tumolo, U.M. Lanfermarquez, Copper chlorophyllin:a food colorant with bioactive properties, J. Food Res. Int. 46(2012) 451-459. [124] J. Han, Y. Wang, J. Ma, Y. Wu, Y. Hu, L. Ni, Y. Li, Simultaneous aqueous two-phase extraction and saponification reaction of chlorophyll from silkworm excrement, Sep. Purif. Technol. 115(2013) 51-56. [125] O. Pulz, W. Gross, Valuable products from biotechnology of microalgae, Appl. Microbiol. Biotechnol. 65(2004) 635-648. [126] Q. Jia, M.K. Sang, Characterization and immunomodulatory activities of polysaccharides extracted from green alga Chlorella ellipsoidea, Int. J. Biol. Macromol. 95(2017) 106-114. [127] X. Wang, X. Zhang, Optimal extraction and hydrolysis of Chlorella pyrenoidosa proteins, Bioresour. Technol. 126(2012) 307-313. [128] C.Y. Chen, Y.H. Chang, H.Y. Chang, Outdoor cultivation of Chlorella vulgaris FSP-E in vertical tubular-type photobioreactors for microalgal protein production, Algal Res. 13(2016) 264-270. [129] A.V. Ursu, A. Marcati, T. Sayd, V. Sante-Lhoutellier, G. Djelveh, P. Michaud, Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris, Bioresour. Technol. 157(2014) 134-139. [130] Y.W. Sari, M.E. Bruins, J.P.M. Sanders, Enzyme assisted protein extraction from rapeseed, soybean, and microalgae meals, Ind. Crop. Prod. 43(2013) 78-83. [131] G.P.T. Lam, P.R. Postma, D.A. Fernandes, R.A.H. Timmermans, M.H. Vermuë, M.J. Barbosa, M.H.M. Eppink, R.H. Wijffels, G. Olivieri, Pulsed electric field for protein release of the microalgae Chlorella vulgaris and Neochloris oleoabundans, Algal Res. 24(2017) 181-187. [132] S.Y. Lee, P.L. Show, T.C. Ling, J.S. Chang, Single-step disruption and protein recovery from Chlorella vulgaris using ultrasonication and ionic liquid buffer aqueous solutions as extractive solvents, Biochem. Eng. J. 124(2017) 26-35. [133] K.W. Chew, J.Y. Yap, P.L. Show, N.H. Suan, J.C. Juan, T.C. Ling, D.J. Lee, J.S. Chang, Microalgae biorefinery:high value products perspectives, Bioresour. Technol. 229(2017) 53-62. [134] S. Bonnet, E.A. Webb, C. Panzeca, D.M. Karl, D.G. Capone, S.A.S. Wilhelmy, Vitamin B12 excretion by cultures of the marine cyanobacteria Crocosphaera and Synechococcus, Limnol. Oceanogr. 55(2010) 1959-1964. [135] J. Wang, X.D. Wang, X.Y. Zhao, X. Liu, T. Dong, F.A. Wu, From microalgae oil to produce novel structured triacylglycerols enriched with unsaturated fatty acids, Bioresour. Technol. 184(2015) 405-414. [136] B. Chen, C. Wan, M.A. Mehmood, J.S. Chang, F. Bai, X. Zhao, Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products-A review, Bioresour. Technol. 244(2017) 1198-1206. [137] R.P. Rastogi, A. Pandey, C. Larroche, D. Madamwar, Algal Green Energy-R&D and technological perspectives for biodiesel production, Renew. Sust. Energ. Rev. 82(2018) 2946-2969. [138] M.K. Ji, H.S. Yun, Y.T. Park, A.N. Kabra, I.H. Oh, J. Choi, Mixotrophic cultivation of a microalga Scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas CO2 for biomass production, J. Environ. Manag. 159(2015) 115-120. [139] P. Majidian, M. Tabatabaei, M. Zeinolabedini, M.P. Naghshbandi, Y. Chisti, Metabolic engineering of microorganisms for biofuel production, Renew. Sust. Energ. Rev. 82(2018) 3863-3885. [140] N. Wieczorek, M.A. Kucuker, K. Kuchta, Microalgae-bacteria flocs (MaB-flocs) as a substrate for fermentative biogas production, Bioresour. Technol. 194(2015) 130-136. [141] T.H.N. Hai, R. Kakarla, B. Min, Algae cathode microbial fuel cells for electricity generation and nutrient removal from landfill leachate wastewater, Int. J. Hydrog. Energy 42(2017) 29433-29442. [142] L. Gouveia, C. Neves, D. Sebastião, B.P. Nobre, C.T. Matos, Effect of light on the production of bioelectricity and added-value microalgae biomass in a photosynthetic alga microbial fuel cell, Bioresour. Technol. 154(2014) 171-177. [143] B. Saba, A.D. Christy, Z. Yu, A.C. Co, Sustainable power generation from bacterioalgal microbial fuel cells (MFCs):an overview, Renew. Sust. Energ. Rev. 73(2017) 75-84. [144] A. Khandelwal, A. Vijay, A. Dixit, M. Chhabra, Microbial fuel cell powered by lipid extracted algae:A promising system for algal lipids and power generation, Bioresour. Technol. 247(2018) 520-527. [145] Z. Li, L. Yao, L. Kong, H. Liu, Electricity generation using a baffled microbial fuel cell convenient for stacking, Bioresour. Technol. 99(2008) 1650-1655. [146] L. He, P. Du, Y. Chen, H. Lu, X. Cheng, B. Chang, Z. Wang, Advances in microbial fuel cells for wastewater treatment, Renew. Sust. Energ. Rev. 71(2016) 388-403. [147] N. Yu, D. Xing, W. Li, Y. Yang, Z. Li, Y. Li, N. Ren, Electricity and methane production from soybean edible oil refinery wastewater using microbial electrochemical systems, Int. J. Hydrog. Energy 42(2017) 96-102. [148] S.E. Oh, B.E. Logan, Hydrogen and electricity production from food processing wastewater using fermentation and microbial fuel cell technologies, Water Res. 39(2005) 4673-4682. [149] B. Cercado-Quezada, M. Delia, A. Bergel, Testing various food-industry wastes for electricity production in microbial fuel cell, Bioresour. Technol. 101(2010) 2748-2754. [150] A. Tremouli, G. Antonopoulou, S. Bebelis, G. Lyberatos, Operation and characterization of a microbial fuel cell fed with pretreated cheese whey at different organic loads, Bioresour. Technol. 131(2013) 380-389. [151] Y. Feng, X. Wang, B.E. Logan, H. Lee, Brewery wastewater treatment using aircathode microbial fuel cells, Appl. Microbiol. Biotechnol. 78(2008) 873-880. [152] E.D. Penteado, C.M. Fernandez-Marchante, M. Zaiat, P. Cañizares, E.R. Gonzalez, M.A.R. Rodrigo, Energy recovery from winery wastewater using a dual chamber microbial fuel cell, J. Chem. Technol. Biotechnol. 91(2016) 1802-1808. [153] S.A. Patil, V.P. Surakasi, S. Koul, S. Ijmulwar, A. Vivek, Y.S. Shouche, B.P. Kapadnis, Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber, Bioresour. Technol. 100(2009) 5132-5139. [154] E. Baranitharan, M.R. Khan, D.M.R. Prasad, J. Salihon, Bioelectricity generation from palm oil mill effluent in microbial fuel cell using polacrylonitrile carbon felt as electrode, Water Air Soil Pollut. 224(2013) 1-11. [155] H.J. Mansoorian, A.H. Mahvi, A.J. Jafari, J. Khanjani, Evaluation of dairy industry wastewater treatment and simultaneous bioelectricity generation in a catalystless and mediator-less membrane microbial fuel cell, J. Saudi Chem. Soc. 20(2016) 88-100. [156] K.P. Katuri, A.M. Enright, V. O'Flaherty, D. Leech, Microbial analysis of anodic biofilm in a microbial fuel cell using slaughterhouse wastewater, Bioelectrochemistry 87(2011) 164-171. [157] N. Lu, S. Zhou, L. Zhuang, J. Zhang, J. Ni, Electricity generation from starch processing wastewater using microbial fuel cell technology, Biochem. Eng. J. 43(2009) 246-251. [158] J. Lowrey, M.S. Brooks, P.J. McGinn, Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges-a critical review, J. Appl. Phycol. 27(2015) 1485-1498. [159] T. Li, Y. Zheng, L. Yu, S. Chen, Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production, Biomass Bioenergy 66(2014) 204-213. [160] T. Li, H. Kirchhoff, M. Gargouri, J. Feng, A.B. Cousins, P.T. Pienkos, D.R. Gang, S. Chen, Assessment of photosynthesis regulation in mixotrophically cultured microalga Chlorella sorokiniana, Algal Res. 19(2016) 30-38. [161] L.M. Schüler, P.S.C. Schulze, H. Pereira, L. Barreira, R. León, J. Varela, Trends and strategies to enhance triacylglycerols and high-value compounds in microalgae, Algal Res. 25(2017) 263-273. [162] R. Radakovits, R.E. Jinkerson, A. Darzins, M.C. Posewitz, Genetic engineering of algae for enhanced biofuel production, Eukaryot. Cell 9(2010) 486-501. [163] C. Baroukh, R. Muñoz-Tamayo, J.P. Steyer, O. Bernard, A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production, Metab. Eng. 30(2015) 49-60. [164] A.K. Bajhaiya, J.Z. Moreira, J.K. Pittman, Transcriptional engineering of microalgae:prospects for high-value chemicals, Trends Biotechnol. 35(2017) 95-99. |
[1] | Chaoqun Wu, Xun Liu, Fujun Yao, Xin Yang, Yan Wang, Wenyuan Hu. Crystalline-magnetism action in biomimetic mineralization of calcium carbonate[J]. 中国化学工程学报, 2023, 59(7): 146-152. |
[2] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media[J]. 中国化学工程学报, 2023, 57(5): 50-62. |
[3] | Huan-Huan Yin, Yin-Lei Han, Xiao Yan, Yi-Xin Guan. Proanthocyanidins prevent tau protein aggregation and disintegrate tau filaments[J]. 中国化学工程学报, 2023, 57(5): 63-71. |
[4] | Suhang Xun, Cancan Wu, Lida Tang, Mengmeng Yuan, Haofeng Chen, Minqiang He, Wenshuai Zhu, Huaming Li. One-pot in-situ synthesis of coralloid supported VO2 catalyst for intensified aerobic oxidative desulfurization[J]. 中国化学工程学报, 2023, 56(4): 136-140. |
[5] | Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane[J]. 中国化学工程学报, 2023, 55(3): 123-136. |
[6] | Fufeng Liu, Luying Jiang, Jingcheng Sang, Fuping Lu, Li Li. Molecular basis of cross-interactions between Aβ and Tau protofibrils probed by molecular simulations[J]. 中国化学工程学报, 2023, 55(3): 173-180. |
[7] | Yu Kiat Lin, Yan-Na Sun, Yu Fan, Hui Yi Leong, Dong-Qiang Lin, Shan-Jing Yao. UV/Vis-based process analytical technology to improve monoclonal antibody and host cell protein separation[J]. 中国化学工程学报, 2023, 55(3): 230-235. |
[8] | Xueqing Chen, Weiqun Gao, Yan Sun, Xiaoyan Dong. Multiple effects of polydopamine nanoparticles on Cu2+-mediated Alzheimer's β-amyloid aggregation[J]. 中国化学工程学报, 2023, 54(2): 144-152. |
[9] | Yi Shen, Xinshuang Chu, Qinghong Shi. Unraveling structure and performance of protein a ligands at liquid–solid interfaces: A multi-techniques analysis[J]. 中国化学工程学报, 2023, 54(2): 232-239. |
[10] | Dahai Jiang, Zhidi Min, Jing Leng, Huanqing Niu, Yong Chen, Dong Liu, Chenjie Zhu, Ming Li, Wei Zhuang, Hanjie Ying. Characterization of two halophilic adenylate cyclases from Thermobifida halotolerans and Haloactinopolyspora alba[J]. 中国化学工程学报, 2023, 53(1): 56-62. |
[11] | Yufei Wang, Zihao Chen, Rui Chen, Jie Wei. A self-healing and conductive ionic hydrogel based on polysaccharides for flexible sensors[J]. 中国化学工程学报, 2023, 53(1): 73-82. |
[12] | Yang Liu, Qiu Han, Guiliang Li, Haibo Lin, Fu Liu, Gang Deng, Dingfeng Lv, Weijie Sun. Purifying chylous plasma by precluding triglyceride via carboxylated polyethersulfone microfiltration membrane[J]. 中国化学工程学报, 2022, 49(9): 130-139. |
[13] | Fenfen You, Qing-Hong Shi. In situ investigation of lysozyme adsorption into polyelectrolyte brushes by quartz crystal microbalance with dissipation[J]. 中国化学工程学报, 2022, 48(8): 106-115. |
[14] | Wei Liu, Xueting Sun, Xiaoyan Dong, Yan Sun. Chiral LVFFARK enantioselectively inhibits amyloid-β protein fibrillogenesis[J]. 中国化学工程学报, 2022, 48(8): 227-235. |
[15] | Xing Zhang, Jingfeng Wu, Junhao Chen, Liang Lu, Lingjun Zhu, Shurong Wang. Production of aromatic hydrocarbons by co-cracking of bio-oil and ethanol over Ga2O3/HZSM-5 catalysts[J]. 中国化学工程学报, 2022, 46(6): 126-133. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||