[1] X.L. Xie, W.Q. Tao, Y.L. He, Numerical study of turbulent heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink, J.Electron. Packag. 129(3) (2007) 247-255. [2] Z.Y. Guo, Frontier of heat transfer-microscale heat transfer, Adv. Mech 30(1) (2000) 1-6. [3] N.A. Roberts, D. Walker, Convective performance of nanofluids in commercial electronics cooling systems, Appl. Therm. Eng. 30(16) (2010) 2499-2504. [4] Intel, Thermal and Mechanical Design Guidelines, 2007. [5] M. Rafati, A.A. Hamidi, M.S. Niaser, Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids), Appl. Therm. Eng. 45(2012) 9-14. [6] D.B. Tuckerman, R.F.W. Pease, High-performance heat sinking for VLSI, IEEE Electron. Device Lett. EDL 2(5) (1981) 126-129. [7] S.U.S. Choi, J.A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles, Proceedings of International Mechanical Engineering Congress and Exhibition, ASME, San Francisco, United States, 1995. [8] H.R.U. Padhye, S.G. Kandlikar, Optimization of microchannel geometry for direct chip cooling using single phase heat transfer, Proceedings of 2nd International Conference on Microchannels and Minichannels, ASME, 2004. [9] S.G. Kandlikar, High flux heat removal with microchannels-A roadmap of challenges and opportunities, Heat Transfer Eng 26(8) (2005) 5-14. [10] S.G. Kandlikar, W.J. Grande, Evaluation of single-phase flow in microchannels for high flux chip cooling-Thermohydraulic performance enhancement and fabrication technology, Heat Transfer Eng. 25(8) (2004) 5-16. [11] M.R. Sohel, S.S. Khaleduzzaman, R. Saidur, A. Hepbasli, M.F.M. Sabri, I.M. Mahbubul, An experimental investigation of heat transfer enhancement of a mini-channel heat sink using Al2O3-H2O nanofluid, Int. J. Heat Mass Transf. 74(2014) 164-172. [12] Yimin Xuan, Qiang Li, Investigation on convective heat transfer and flow features of nanofluids, J. Heat Transfer 125(1) (2003) 151-155. [13] D. Wen, Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, Int. J. Heat Mass Transfer 47(24) (2004) 5181-5188. [14] M. Chandrasekar, S. Suresh, A. Chandra Bose, Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid in the circular pipe under laminar flow with wire coil inserts, Exp. Thermal Fluid Sci. 24(2010) 122-130. [15] S. Suresh, M. Chandrasekar, S. Chandra Sekhar, Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in a helically dimpled tube, Exp Therm Fluid Sci 35(3) (2011) 542-549. [16] S. Tahir, M. Mital, Numerical investigation of laminar nanofluid developing flow and heat transfer in a circular channel, Appl. Therm. Eng. 39(2012) 8-14. [17] O. Manca, S. Nardini, D. Ricci, A numerical study of nanofluid forced convection in ribbed channels, Appl. Therm. Eng. 37(2012) 280-292. [18] A.P. Sasmito, J.C. Kurnia, A.S. Mujumdar, Numerical evaluation of laminar heattransfer enhancement in nanofluid flow in coiled square tubes, NanoscaleRes. Lett. 6(1) (2011) 376. [19] V. Bianco, S. Nardini, O. Manca, Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square sectiontubes, Nanoscale Res. Lett. 6(1) (2011) 252. [20] K. Anoop, R. Sadr, J. Yu, S. Kang, S. Jeon, D. Banerjee, Experimental study of forced convective heat transfer of nanofluids in a microchannel, Int. Commun.Heat Mass Transfer 39(9) (2012) 1325-1330. [21] C.J. Ho, L.C. Wei, Z.W. Li, An experimental investigation of the forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid, Appl. Therm. Eng. 30(2-3) (2010) 96-103. [22] E.A.M. Elshafei, M.M. Awad, E. El-Negiry, A.G. Ali, Heat transfer and pressure drop in corrugated channels, Energy 35(1) (2010) 101-110. [23] G. Xia, D. Ma, Y. Zhai, Y. Li, R. Liu, M. Du, Experimental and numerical study of fluid flow and heat transfer characteristics in the microchannel heat sink with complex structure, Energy Convers. Manag. 105(2015) 848-857. [24] Y. Li, F. Zhang, B. Sunden, G. Xie, Laminar thermal performance of microchannel heat sinks with constructal vertical Y-shaped bifurcation plates, Appl. Therm. Eng. 73(1) (2014) 185-195. [25] R. Zhang, Z. Chen, G. Xie, B. Sunden, Numerical analysis of constructal water-cooled microchannel heat sinks with multiple bifurcations in the entrance region, Numer. Heat Transfer Part A 67(6) (2015) 632-650. [26] F. Zhang, B. Sundén, W. Zhang, G. Xie, Constructal parallel-flow and counter flow microchannel heat sinks with bifurcations, Numer. Heat Transfer PartA 68(10) (2015) 1087-1105. [27] W.M. Abed, R.D. Whalley, D.J.C. Dennis, R.J. Poole, Numerical and experimental investigation of heat transfer and fluid flow characteristics in a micro-scale serpentine channel, Int. J. Heat Mass Transfer 88(2015) 790-802. [28] P. Gunnasegaran, H.A. Mohammed, N.H. Shuaib, R. Saidur, The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes, Int. Commun. Heat Mass Transf. 37(8) (2010) 1078-1086. [29] X. Chen, T. Li, H. Zeng, Numerical and experimental investigation on micromixers with serpentine microchannels, Int J. Heat Mass Transfer 98(2016) 131-140. [30] K.V. Mahesh, V. Linsha, A.P. Mohamed, Processing of 2D-MAXene nanostructures and design of high thermal conducting, rheo-controlled MAXene nanofluids as a potential nanocoolant, Chem. Eng. J. 297(2016) 158-169. [31] H.W. Xian, and N.A.C. Sidik, Erosion-corrosion effect of nanocoolant on actual car water pump. Mater. Sci. Eng. C (Vol. 469, No. 1, p. 012039) IOP Publishing. 2019. [32] K.D. Kumar, B.U. Gowd, Convective heat transfer characteristics of graphene dispersed nanofluids, Int. J. Mech. Eng. Robot. Res. 60(2012) 250. [33] R. Ramachandran, S. Felix, G.M. Joshi, B.P. Raghupathy, S.K. Jeong, A.N. Grace, Synthesis of graphene platelets by chemical and electrochemical route, Mater. Res. Bull. 48(10) (2013) 3834-3842. [34] B. Paulchamy, G. Arthi, B.D. Lignesh, Simple approach to stepwise synthesis of graphene oxide nanomaterial, J. Nanosci Nanotechnol. India 6(1) (2015) 1-4. [35] T.D. Dao, H.M. Jeong, Graphene prepared by thermal reduction-exfoliation of graphite oxide:Effect of raw graphite particle size on the properties of graphite oxide and graphene, Mater. Res. Bull. 70(2015) 651-657. [36] D. Kostyukova, Y.H. Chung, Synthesis of iron oxide nanoparticles using isobutanol, J. Nanomater 416(2016) 81-88. [37] S. Kannaiyan, C. Boobalan, A. Umasankaran, A. Ravirajan, S. Sathyan, T. Thomas, Comparison of experimental and calculated thermo physical properties of alumina/cupric oxide hybrid nanofluids, J. Mol. Liq. 244(2017) 469-477. [38] J.J. Chen, S.J. Chen, Y.W. Ko, Continuous-flow polymerase chain reaction chip by water cooling, Eng. Agric. Environ. Food. 6(3) (2013) 99-104. |