[1] I.A. Ghani, N.A.C. Sidik, N. Kamaruzaman, Hydrothermal performance of microchannel heat sink:The effect of channel design, Int. J. Heat Mass Transf. 107(2017) 21-44. [2] H.E. Ahmed, B.H. Salman, A.S. Kherbeet, M.I. Ahmed, Optimization of thermal design of heat sinks:A review, Int. J. Heat Mass Transf. 118(2018) 129-153. [3] B. Yang, P. Wang, A. Bar-Cohen, Mini-contact enhanced thermoelectric cooling of hot spots in high power devices, IEEE Transactions on Components and Packaging Technologies. 30(2007) 432-438. [4] H.Y. Li, M.H. Chiang, C.I. Lee, W.J. Yang, Thermal performance of plate-fin vapor chamber heat sinks, International Communications in Heat and Mass Transfer. 37(2010) 731-738. [5] Business communications company, bcc research. Available:https://www.bccresearch.com/market-research/semiconductor-manufacturing/thermal-management-technologies-market-smc024g.html [6] D.B. Tuckerman, R.F.W. Pease, High-performance heat sinking for vlsi, IEEE Electron Device Letters. 3(1987) 126-129. [7] H.Y. Lee, Y.W. Jeong, J.H. Shin, J.H. Baek, M.K. Kang, K.J. Chun, Package embedded heat exchanger for stacked multi-chip module, Sensors Actuators A Phys. 114(2004) 204-211. [8] R.Y. Chein, J.H. Chen, Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance, Int. J. Therm. Sci. 48(2009) 1627-1638. [9] S.K. Das, C.S.U. S., H.E. Patel, Heat transfer in nanofluids-A review, Heat Transfer Engineering. 27(2006) 3-19. [10] H. Chen, et al., Thermal conductivity of polymer-based composites:Fundamentals and applications, Prog. Polym. Sci. 59(2016) 41-85. [11] A.R.J. Hussain, A.A. Alahyari, S.A. Eastman, C. Thibaud-Erkey, S. Johnston, M.J. Sobkowicz, Review of polymers for heat exchanger applications:Factors concerning thermal conductivity, Appl. Therm. Eng. 113(2017) 1118-1127. [12] L. Zaheed, R.J.J. Jachuck, Review of polymer compact heat exchangers, with special emphasis on a polymer film unit, Appl. Therm. Eng. 24(2004) 2323-2358. [13] P. Naphon, S. Klangchart, S. Wongwises, Numerical investigation on the heat transfer and flow in the mini-fin heat sink for cpu, International Communications in Heat and Mass Transfer. 36(2009) 834-840. [14] P. Naphon, S. Wiriyasart, Liquid cooling in the mini-rectangular fin heat sink with and without thermoelectric for cpu, International Communications in Heat and Mass Transfer. 36(2009) 166-171. [15] M. Marengo, S. Zhdanov, L. Chignoli, G.E. Cossali, Micro-Heat-Sinks for Space Applications, the ASME 2nd International Conference on Microchannels and Minichannels, 2004. [16] M.M. Rahman, F.L. Gui, Design, fabrication, and testing of microchannel heat sinks for aircraft avionics cooling, Proceedings of the 28th Intersociety Energy Conversion, Eng. Conf. 1(1993) 1-6. [17] A. Barba, B. Musi, M. Spiga, Performance of a polymeric heat sink with circular microchannels, Appl. Therm. Eng. 26(2006) 787-794. [18] W.L. Qu, I. Mudawar, Experimental and numerical study of pressure drop and heat transfer in a single phase microchannel heat sink, Int. J. Heat Mass Transf. 45(2002) 2549-2565. [19] R. Bahadur, A. Bar-Cohen, Thermal design and optimization of natural convection polymer pin fin heat sinks, IEEE Transactions on Components and Packaging Technologies. 28(2005) 238-246. [20] H. Jiang, J. Zhuang, Y. Liu, Z.L. Zhao, D.M. Wu, Quantitative analysis of factors influencing heat dissipation in a metal-plastic composite heat radiator with a hemispherical microstructure array, Math. Probl. Eng. 2015(2015) 1-6. [21] J. Zhuang, C.Q. Huang, G. Zhou, Z.M. Liu, et al., Influence of factors on heat dissipation performance of composite metal-polymer heat exchanger with rectangular microstructure, Appl. Therm. Eng. 102(2016) 1473-1480. [22] Y. Zhai, G. Xia, Z. Chen, Z. Li, Micro-piv study of flow and the formation of vortex in micro heat sinks with cavities and ribs, Int. J. Heat Mass Transf. 98(2016) 380-389. [23] G. Xia, Z. Chen, L. Cheng, D. Ma, Y. Zhai, Y. Yang, Micro-piv visualization and numerical simulation of flow and heat transfer in three micro pin-fin heat sinks, Int. J. Therm. Sci. 119(2017) 9-23. [24] P. Kim, K.W. Kwon, M.C. Park, H.L. Lee, S.M. Kim, K.Y. Suh, Soft lithography for microfluidics:A review, Biochip Journal. 2(2008) 1-11. [25] D. Qin, Y. Xia, G.M. Whitesides, Soft lithography for micro- and nanoscale patterning, Nat. Protoc. 5(2010) 491-502. [26] N.P. Macdonald, J.M. Cabot, P. Smejkal, R.M. Guijt, B. Paull, M.C. Breadmore, Comparing microfluidic platform of three-dimensional (3d) printing platforms, Anal. Chem. 89(2017) 3858-3866. [27] X.H. Hao, Z.X. Wu, X.F. Chen, G.N. Xie, Numerical analysis and optimization on flow distribution and heat transfer of a u-type parallel channel heat sink, Advances in Mechanical Engineering. 7(2014) 1-11. [28] M.R. Hajmohammadi, P. Alipour, H. Parsa, Microfluidic effects on the heat transfer enhancement and optimal design of microchannels heat sinks, Int. J. Heat Mass Transf. 126(2018) 808-815. [29] R.S. Vajjha, D.K. Das, A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power, International Journal of Heat and Mass Transfer 55(2012) 4063-4078. [30] L.S. Sundar, K.V. Sharma, M.T. Naik, M.K. Singh, Empirical and theoretical correlations on viscosity of nanofluids:A review, Renew. Sust. Energ. Rev. 25(2013) 670-686. [31] J.P. Meyer, S.A. Adio, M. Sharifpur, P.N. Nwosu, The viscosity of nanofluids-A review of the theoretical, emperical, and numerical models, Heat Transfer Engineering. 37(2015) 387-421. [32] I.M. Mahbubul, R. Saidur, M.A. Amalina, Latest developments on the viscosity of nanofluids, Int. J. Heat Mass Transf. 55(2012) 874-885. [33] A.K. Sharma, A.K. Tiwari, A.R. Dixit, Rheological behaviour of nanofluids-a review, Renew. Sust. Energ. Rev. 53(2016) 779-791. [34] M. Hatami, D.D. Ganji, Thermal and flow analysis of microchannel heat sink (mchs) cooled by cu-water nanofluid using porous media approach and least square method, Energy Convers. Manag. 78(2014) 347-358. [35] B. Singh, M. Singh, H. Garg, I. Kaur, S. Suryavanshi, H. Kumar, Experimental and numerical analysis of micro-scale heat transfer using carbon based nanofluid in microchannel for enhanced thermal performance, IOP Conference Series:Materials Science and Engineering. 149(2016) 14-16. [36] A.A. Alfaryjat, H.A. Mohammed, N.M. Adam, D. Stanciu, A. Dobrovicescu, Numerical investigation of heat transfer enhancement using various nanofluids in hexagonal microchannel heat sink, Thermal Science and Engineering Progress. 5(2018) 252-262. [37] J.E. Mark, Polymer Data Handbook, 2nd ed Oxford University Press, 2009. [38] M.A. Vadivelu, C.R. Kumar, G.M. Joshi, Polymer composites for thermal management:A review, Composite Interfaces. 23(2016) 847-872. [39] S.Y. Kwon, I.M. Kwon, Y.-G. Kim, S. Lee, Y.-S. Seo, A large increase in the thermal conductivity of carbon nanotube/polymer composites produced by percolation phenomena, Carbon. 55(2013) 285-290. [40] S.L. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, et al., Box-behnken design:An alternative for the optimization of analytical methods, Anal Chim Acta 597(2007) 179-186. [41] M. Mohammadi, G.N. Jovanovic, K.V. Sharp, Numerical study of flow uniformity and pressure characteristics within a microchannel array with triangular manifolds, Comput. Chem. Eng. 52(2013) 134-144. [42] D.C. Tretheway, C.D. Meinhart, Apparent fluid slip at hydrophobic microchannel wall, Phys. Fluids 14(2002) 9-12. [43] H. Ermagan, R. Rafee, Effect of pumping power on the thermal design of converging microchannels with superhydrophobic walls, Int. J. Therm. Sci. 132(2018) 104-116. [44] P. Roy, N.K. Anand, D. Banerjee, Liquid slip and heat transfer in rotating rectangular microchannels, Int. J. Heat Mass Transf. 62(2013) 184-199. [45] A. Sohankar, M. Riahi, E. Shirani, Numerical investigation of heat transfer and pressure drop in a rotating u-shaped hydrophobic microchannel with slip flow and temperature jump boundary conditions, Appl. Therm. Eng. 117(2017) 308-321. [46] J.H. Ryu, D.H. Choi, S.J. Kim, Numerical optimization of the thermal performance of a microchannel heat sink, Int. J. Heat Mass Transf. 45(2002) 2823-2827. [47] K.C. Toh, X.Y. Chen, J.C. Chai, Numerical computation of fluid flow and heattransfer in microchannels, Int. J. Heat Mass Transf. 45(2002) 5133-5141. [48] D. Liu, S.V. Garimella, Analysis and optimization of the thermal performance of microchannel heat sinks, International Journal of Numerical Methods for Heat & Fluid Flow. 15(2005) 7-26. [49] G. Shives, J. Norley, M. Smalc, G. Chen, J. Capp, Comparative thermal performance evaluation of graphite-epoxy fin heat sinks, 2004 Inter Society Conference on Thermal Performance 2004, pp. 410-417. |