[1] A. Onda, T. Ochi, K. Yanagisawa, Selective hydrolysis of cellulose into glucose over solid acid catalysts, Green Chem. 10(2008) 1033-1037. [2] Y. Wu, Z. Fu, D. Yin, Q. Xu, F. Liu, C. Lu, L. Mao, Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids, Green Chem. 12(2010) 696. [3] N. Yan, C. Zhao, C. Luo, P.J. Dyson, H. Liu, Y. Kou, One-step conversion of cellobiose to C6-alcohols using a ruthenium nanocluster catalyst, J. Am. Chem. Soc. 128(2006) 8714-8715. [4] S. Van de Vyver, J. Geboers, M. Dusselier, H. Schepers, T. Vosch, L. Zhang, G. Van Tendeloo, P.A. Jacobs, B.F. Sels, Selective bifunctional catalytic conversion of cellulose over reshaped Ni particles at the tip of carbon nanofibers, ChemSusChem 3(2010) 698-701. [5] L. Kong, G. Li, H. Wang, W. He, F. Ling, Hydrothermal catalytic conversion of biomass for lactic acid production, J. Chem. Technol. Biotechnol. 83(2008) 383-388. [6] Y. Izumizaki, K.C. Park, Y. Tachibana, H. Tomiyasu, Y. Fujii, Organic decomposition in supercritical water by an aid of ruthenium (iv) oxide as a catalyst-exploitation of biomass resources for hydrogen production, Prog. Nucl. Energ. 47(2005) 544-552. [7] M. Osada, T. Sato, M. Watanabe, T. Adschiri, K. Arai, Low-temperature catalytic gasification of lignin and cellulose with a ruthenium catalyst in supercritical water, Energ. Fuel. 18(2004) 327-333. [8] P.J. Dauenhauer, B.J. Dreyer, N.J. Degenstein, L.D. Schmidt, Millisecond reforming of solid biomass for sustainable fuels, Angew. Chem. Int. Ed. Engl. 46(2007) 5864-5867. [9] R. Lanza, D. Dalle Nogare, P. Canu, Gas phase chemistry in cellulose fast pyrolysis, Ind. Eng. Chem. Res. 48(2009) 1391-1399. [10] S.E. Hosseini, M.A. Wahid, Hydrogen production from renewable and sustainable energy resources:Promising green energy carrier for clean development, Renew. Sust. Energ. Rev. 57(2016) 850-866. [11] J.F. Madrid, L.V. Abad, Modification of microcrystalline cellulose by gamma radiation-induced grafting, Radiat. Phys. Chem. 115(2015) 143-147. [12] N. Muradov, T. Veziroglu, "Green" path from fossil-based to hydrogen economy:An overview of carbon-neutral technologies, Int. J. of Hydrogen Energy 33(2008) 6804-6839. [13] S. Turn, C. Kinoshita, Z. Zhang, D. Ishimura, J. Zhou, An experimental investigation of hydrogen production from biomass gasification, Int. J. Hydrog. Energy 23(1998) 641-648. [14] S. Abdullah, S. Yusup, M.M. Ahmad, A. Ramli, L. Ismail, Thermogravimetry study on pyrolysis of various lignocellulosic biomass for potential hydrogen production, Inter. J. Chem. Biol. Eng. 3(2010) 137-141. [15] D. Wang, S. Czernik, E. Chornet, Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oils, Energ. Fuel. 12(1998) 19-24. [16] D.W. Wakerley, M.F. Kuehnel, K.L. Orchard, K.H. Ly, T.E. Rosser, E. Reisner, Solardriven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst, Nat. Energy 2(2017) 17021. [17] L.R. Lynd, P.J. Weimer, W.H. Van Zyl, I.S. Pretorius, Microbial cellulose utilization:fundamentals and biotechnology, Microbiol. Mol. Biol. R. 66(2002) 506-577. [18] T. Kawai, T. Sakata, Conversion of carbohydrate into hydrogen fuel by a photocatalytic process, Nature 286(1980) 474. [19] T. Kawai, T. Sakata, Photocatalytic hydrogen production from water by the decomposition of poly-vinylchloride, protein, algae, dead insects, and excrement, Chem. Lett. 10(1981) 81-84. [20] L. Zhang, W. Wang, S. Zeng, Y. Su, H. Hao, Enhanced H2 evolution from photocatalytic cellulose conversion based on graphitic carbon layers on TiO2/NiOx, Green Chem. 13(2018) 3008-3013, https://doi.org/10.1039/C8GC01398E. [21] H. Hao, L. Zhang, W. Wang, S. Zeng, Facile modification of titania with nickel sulfide and sulfate species for the photoreformation of cellulose into hydrogen, ChemSusChem 11(2018) 2810-2817. [22] G. Zhang, C. Ni, X. Huang, A. Welgamage, L.A. Lawton, P.K. Robertson, J.T. Irvine, Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-light photocatalysis, Chem Commun (Camb) 52(2016) 1673-1676. [23] H. Kasap, D.S. Achilleos, A. Huang, E. Reisner, Photoreforming of lignocellulose into H2 using nanoengineered carbon nitride under benign conditions, J. Am. Chem. Soc. 140(2018) 11604-11607. [24] J. Zou, G. Zhang, X. Xu, One-pot photoreforming of cellulosic biomass waste to hydrogen by merging photocatalysis with acid hydrolysis, Appl. Catal. A Gen. 563(2018) 73-79. [25] D.I. Kondarides, V.M. Daskalaki, A. Patsoura, X.E. Verykios, Hydrogen production by photo-induced reforming of biomass components and derivatives at ambient conditions, Catal. Lett. 122(2008) 26-32. [26] D.I. Kondarides, A. Patsoura, X.E. Verykios, Anaerobic photocatalytic oxidation of carbohydrates in aqueous Pt/TiO2 suspensions with simultaneous production of hydrogen, J. Adv. Oxid. Technol. 13(2010) 116-123. [27] A. Speltini, M. Sturini, D. Dondi, E. Annovazzi, F. Maraschi, V. Caratto, A. Profumo, A. Buttafava, Sunlight-promoted photocatalytic hydrogen gas evolution from watersuspended cellulose:a systematic study, Photochem. Photobiol. Sci. 13(2014) 1410-1419. [28] A. Caravaca, W. Jones, C. Hardacre, M. Bowker, H2 production by the photocatalytic reforming of cellulose and raw biomass using Ni, Pd, Pt and Au on titania, Proc. Math. Phys. Eng. Sci. 472(2016) 20160054. [29] C. Chang, N. Skillen, S. Nagarajan, K. Ralphs, J.T.S. Irvine, L. Lawton, P.K.J. Robertson, Using cellulose polymorphs for enhanced hydrogen production from photocatalytic reforming, Sustain. Energ. Fuels. 3(2019) 1971-1975. [30] L. Qi, J. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets, Phys. Chem. Chem. Phys. 13(2011) 8915-8923. [31] Y. Zhu, D. Liu, M. Meng, H2 spillover enhanced hydrogenation capability of TiO2 used for photocatalytic splitting of water:a traditional phenomenon for new applications, Chem. Commun. 50(2014) 6049-6051. [32] J. Lu, L. Lan, X.T. Liu, N. Wang, X. Fan, Plasmonic Au nanoparticles supported on both side of TiO2 hollow spheres for maximising photocatalytic activity under visible light, Front. Chem. Sci. Eng. 13(2019) 665-671. [33] P.L. Dhepe, A. Fukuoka, Cellulose conversion under heterogeneous catalysis, ChemSusChem 1(2008) 969-975. [34] C. Zhang, H. He, K.-i. Tanaka, Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature, Appl. Catal. B Environ. 65(2006) 37-43. [35] S. Kuhaudomlap, O. Mekasuwandumrong, P. Praserthdam, S.-I. Fujita, M. Arai, J. Panpranot, The H2-treated TiO2 supported Pt catalysts prepared bystrong electrostatic adsorption for liquid-phase selective hydrogenation, Catalysts 8(2018) 87. [36] A. Naldoni, M. D'Arienzo, M. Altomare, M. Marelli, R. Scotti, F. Morazzoni, E. Selli, V. Dal Santo, Pt and Au/TiO2 photocatalysts for methanol reforming:Role of metal nanoparticles in tuning charge trapping properties and photoefficiency, Appl. Catal. B Environ. 130(2013) 239-248. [37] P. Gomathisankar, D. Yamamoto, H. Katsumata, T. Suzuki, S. Kaneco, Photocatalytic hydrogen production with aid of simultaneous metal deposition using titanium dioxide from aqueous glucose solution, Int. J. Hydrog. Energy 38(2013) 5517-5524. [38] R. Chong, J. Li, Y. Ma, B. Zhang, H. Han, C. Li, Selective conversion of aqueous glucose to value-added sugar aldose on TiO2-based photocatalysts, J. Catal. 314(2014) 101-108. [39] G. Wu, T. Chen, G. Zhou, X. Zong, C. Li, H2 production with low CO selectivity from photocatalytic reforming of glucose on metal/TiO2 catalysts, Sci. China, Ser. B:Chem. 51(2008) 97-100. [40] V.M. Daskalaki, D.I. Kondarides, Efficient production of hydrogen by photo-induced reforming of glycerol at ambient conditions, Catal. Today 144(2009) 75-80. [41] A.V. Puga, Photocatalytic production of hydrogen from biomass-derived feedstocks, Coord. Chem. Rev. 315(2016) 1-66. [42] Y. Bessekhouad, D. Robert, J.V. Weber, Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions, Catal. Today 101(2005) 315-321. [43] V. Pfeifer, P. Erhart, S. Li, K. Rachut, J. Morasch, J. Brötz, P. Reckers, T. Mayer, S. Rühle, A. Zaban, I. Mora Seró, J. Bisquert, W. Jaegermann, A. Klein, Energy band alignment between anatase and rutile TiO2, J. Phys. Chem. Lett. 4(2013) 4182-4187. |