[1] S.J. Davis, K. Caldeira, H.D. Matthews, Future CO2 emissions and climate change from existing energy infrastructure, Science 329(2010) 1330-1333. [2] Z. Zhang, T.N.G. Borhani, M.H. El-Nas, Chapter 4.5-carbon capture, in:I. Dincer, C.O. Colpan, O. Kizilkan (Eds.), Exergetic, Energetic and Environmental Dimensions, Academic Press 2018, pp. 997-1016. [3] P. Wattanaphan, Studies and Prevention of Carbon Steel Corrosion and Solvent Degradation during Amine-Based CO2 Capture from Industrial Gas Streams, Ph.D Thesis. Faculty of Graduate Studies and Research, University of Regina, Regina, 2012. [4] J. Yan, Z. Zhang, Carbon capture, utilization and storage (CCUS), Appl. Energy 235(2019) 1289-1299. [5] I.M. Saeed, P. Alaba, S.A. Mazari, W.J. Basirun, V.S. Lee, N. Sabzoi, Opportunities and challenges in the development of monoethanolamine and its blends for post-combustion CO2 capture, Int. J. Greenhouse Gas Control 79(2018) 212-233. [6] S. Rinprasertmeechai, S. Chavadej, P. Rangsunvigit, S. Kulprathipanja, Carbon dioxide removal from flue gas using amine-based hybrid solvent absorption, Int. J. Chem. Biol. Eng. 6(2012) 296-300. [7] M. Shahid, M. Faisal, Effect of hydrogen sulfide gas concentration on the corrosion behavior of "ASTM A-106 Grade-A" carbon steel in 14% diethanol amine solution, Arab. J. Sci. Eng. 34(2009) 179. [8] R. Mesgarian, Corrosion Management in Gas Treating Plants (GTP's):Comparison between Corrosion Rate of DEA and MDEA a Case Study in Sour Gas Refinery, International Conference on Industrial Engineering and Operations Management, Bali, Indonesia, 2014. [9] Z. Zhang, F. Chen, M. Rezakazemi, W. Zhang, C. Lu, H. Chang, X. Quan, Modeling of a CO2-piperazine-membrane absorption system, Chem. Eng. Res. Des. 131(2018) 375-384. [10] L. Ghalib, B.S. Ali, W.M. Ashri, S. Mazari, I.M. Saeed, Modeling the effect of piperazine on CO2 loading in MDEA/PZ mixture, Fluid Phase Equilib. 434(2017) 233-243. [11] L. Ghalib, B.S. Ali, W.M. Ashri, S. Mazari, Effect of piperazine on solubility of carbon dioxide using aqueous diethanolamnie, Fluid Phase Equilib. 414(2016) 1-13. [12] C.T. Liu, K.B. Fischer, G.T. Rochelle, Corrosion by aqueous piperazine at 40-150℃ in pilot testing of CO2 capture, Ind. Eng. Chem. Res. 59(15) (2020) 7189-7197. [13] L. Zheng, N.S. Matin, J. Landon, G.A. Thomas, K. Liu, CO2 loading-dependent corrosion of carbon steel and formation of corrosion products in anoxic 30 wt.% monoethanolamine-based solutions, Corros. Sci. 102(2016) 44-54. [14] K. Fischer, G. Rochelle, Fe2+ Solubility and Siderite Formation in Monoethanolamine and Piperazine Solvents, 14th Greenhouse Gas Control Technologies Conference Melbourne, 201821-26. [15] M. Nainar, A. Veawab, Corrosion in CO2 capture process using blended monoethanolamine and piperazine, Ind. Eng. Chem. Res. 48(2009) 9299-9306. [16] B. Zhao, Y. Sun, Y. Yuan, J. Gao, S. Wang, Y. Zhuo, C. Chen, Study on corrosion in CO2 chemical absorption process using amine solution, Energy Procedia 4(2011) 93-100. [17] C. Louis, K.L.S. Campbell, D.R. Williams, Carbon steel corrosion in piperazine-promoted blends under CO2 capture conditions, Int. J. Greenhouse Gas Control 55(2016) 144-152. [18] Y. Xiang, H. Huang, Z. Long, C. Li, W. Yan, Role of residual 2-amino-2-methyl-1-propanol and piperazine in the corrosion of X80 steel within an impure supercritical CO2 environment as relevant to CCUS, Int. J. Greenhouse Gas Control 82(2019) 127-137. [19] L. Ghalib, B.S. Ali, S. Mazari, W.M. Ashri, I.M. Saeed, Modeling the effect of piperazine on carbon steel corrosion rate in carbonated activated MDEA solutions, Int. J. Electrochem. Sci. 11(2016) 4560-4585. [20] B.S. Ali, Carbon Dioxide Absorption and its Corrosivity in Aqueous Solutions of Activated Diethanolamine and Methyldiethanolamine and their Mixtures,Ph.D Thesis, Faculty of Engineering, University of Malaya, Kuala Lumpur, 2007. [21] S. Bishnoi, G.T. Rochelle, Thermodynamics of piperazine/methyldiethanolamine/water/carbon dioxide, Ind. Eng. Chem. Res. 41(2002) 604-612. [22] D.M. Austgen, G.T. Rochelle, X. Peng, C.C. Chen, Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL equation, Ind. Eng. Chem. Res. 28(1989) 1060-1073. [23] R. Sidi-Boumedine, S. Horstmann, K. Fischer, E. Provost, W. Fürst, J. Gmehling, Experimental determination of carbon dioxide solubility data in aqueous alkanolamine solutions, Fluid Phase Equilib. 218(2004) 85-94. [24] M. Haji-Sulaiman, M. Aroua, A. Benamor, Analysis of equilibrium data of CO2 in aqueous solutions of DEA, MDEA and their mixtures using the modified Kent Eisenberg model, Trans Chem E 76(1998) 961-968. [25] O.F. Dawodu, A. Meisen, Solubility of carbon dioxide in aqueous mixtures of alkanolamines, J. Chem. Eng. Data 39(1994) 548-552. [26] J.I. Lee, F.D. Otto, A.E. Mather, Solubility of carbon dioxide in aqueous diethanolamine solutions at high pressures, J. Chem. Eng. Data 17(1972) 465-468. [27] M.K. Mondal, Solubility of carbon dioxide in an aqueous blend of diethanolamine and piperazine, J. Chem. Eng. Data 54(2009) 2381-2385. [28] B.E. Poling, J.M. Prausnitz, J.P. O'connell, The properties of gases and liquids, McGraw-Hill New York, 2001. [29] C.F. Spencer, R.P. Danner, Prediction of bubble-point density of mixtures, J. Chem. Eng. Data 18(1973) 230-234. [30] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27(1972) 1197-1203. [31] C.C. Chen, L.B. Evans, A local composition model for the excess Gibbs energy of aqueous electrolyte systems, AIChE J. 32(1986) 444-454. [32] B. Mock, L. Evans, C.C. Chen, Thermodynamic representation of phase equilibria of mixed-solvent electrolyte systems, AIChE J. 32(1986) 1655-1664. [33] H. Renon, J.M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures, AIChE J. 14(1968) 135-144. [34] K.S. Pitzer, Electrolytes. From dilute solutions to fused salts, J. Am. Chem. Soc. 102(1980) 2902-2906. [35] V.G. Levich, Physicochemical Hydrodynamics, Prentice-hall Englewood Cliffs, NJ1962. [36] J.E. Critchfield, CO2 Absorption/Desorption Methyldiethanolamine Solutions Promoted with Monoethanolamine and Diethanolamine:Mass Transfer and Reaction Kinetics, 1988. [37] R.H. Weiland, J.C. Dingman, D.B. Cronin, G.J. Browning, Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends, J. Chem. Eng. Data 43(1998) 378-382. [38] A. Najumudeen, Development of a Mechanistic Corrosion Model for Carbon Steel in MEA-Based CO2 Absorption Process, Ms. Thesis, University of Regina, Faculty of Graduate Studies and Research, Regina, 2012. [39] W. Sun, S. Nešić, R.C. Woollam, The effect of temperature and ionic strength on iron carbonate (FeCO3) solubility limit, Corros. Sci. 51(2009) 1273-1276. [40] L.G. Gray, B.G. Anderson, M.J. Danysh, P.R. Tremaine, Mechanisms of Carbon Steel Corrosion in Brines Containing Dissolved Carbon Dioxide at pH 4, Corrosion/89, Paper, 1989. [41] M. Hamada, T. Zewail, H. Farag, Study of corrosion behaviour of A106 carbon steel absorber for CO2 removal in amine promoted hot potassium carbonate solution (Benfield solution), Corros. Eng. Sci. Technol. 49(2014) 209-218. [42] L. Frolova, M. Fokin, V. Zorina, Corrosion-Electrochemical behavior of carbon steels in carbonate-bicarbonate solutions, Protection of metals. 33(3) (1997) 281-284. [43] W. Banks, Corrosion in hot carbonate systems, Mater. Prot. Performance. 6(1967) 37-41. [44] D. Davies, G. Burstein, The effects of bicarbonate on the corrosion and passivation of iron, Corrosion 36(1980) 416-422. [45] A. Chakma, A. Meisen, Corrosivity of diethanolamine solutions and their degradation products, Ind. Eng. Chem. Prod. Res. Dev. 25(1986) 627-630. [46] Y. Tomoe, K. Sato, Uneven distribution of metallic ions in deposits precipitated in the Koshijihara DGA CO2 removal units in:Corrosion 97, NACE Int (1997)339. |