[1] A.T. Jarullah, I.M. Mujtaba, A.S. Wood, Improvement of the middle distillate yields during crude oil hydrotreatment in a Trickle-Bed Reactor, Energy Fuel 25(2) (2011) 773-781. [2] T.T. Nguyen, E.W. Qian, Synthesis of mesoporous Ti-inserted SBA-15 and CoMo/TiSBA-15 catalyst for hydrodesulfurization and hydrodearomatization, Microporous Mesoporous Mater. 265(2018) 1-7. [3] R. Obeso-Estrella, J.L.G. Fierro, J.N.D. de León, S. Fuentes, G. Alonso-Nuñez, E. LugoMedina, B. Pawelec, T.A. Zepeda, Effect of partial Mo substitution by W on HDS activity using sulfide CoMoW/Al2CO3-TiO2 catalysts, Fuel 233(2018) 644-657. [4] H.B. Park, Y.K. Lee, Designing supported NiMoS2 catalysts for hydrocracking of vacuum residue, Fuel 239(2019) 1265-1273. [5] A.N. Varakin, A.V. Mozhaev, A.A. Pimerzin, P.A. Nikulshin, Comparable investigation of unsupported MoS2 hydrodesulfurization catalysts prepared by different techniques:Advantages of support leaching method, Appl. Catal., B 238(2018) 498-508. [6] T.C. Ho, A theory of ultradeep hydrodesulfurization of diesel in stacked-bed reactors, AIChE J. 64(2) (2018) 595-605. [7] M. Xu, H. Liu, S.F. Ji, C.Y. Li, Intensification of deep hydrodesulfurization through a two-stage combination of monolith and trickle bed reactors, Chin. J. Chem. Eng. 22(8) (2014) 888-897. [8] H. Yamada, S. Goto, Advantages of counter-current operation for hydrodesulfurization in trickle bed reactors, Korean J. Chem. Eng. 21(4) (2004) 773-776. [9] G. Chen, Z. Hu, Summary on production technology of 1.4 Mt/a hydrocracking plant processing coker gatch, Qilu Petrochem. Techno. 2(2006) 114-118(in Chinese). [10] G. Marroquín, J. Ancheyta, C. Esteban, A batch reactor study to determine effectiveness factors of commercial HDS catalyst, Catal. Today 104(1) (2005) 70-75. [11] T.F. Wang, J.F. Wang, Y. Jin, Slurry reactors for gas-to-liquid processes:A review, Ind. Eng. Chem. Res. 46(18) (2007) 5824-5847. [12] Z. Deng, T. Wang, Z. Wang, Hydrodesulfurization of diesel in a slurry reactor, Chem. Eng. Sci. 65(1) (2010) 480-486. [13] B. Khadem-Hamedani, S. Yaghmaei, M. Fattahi, S. Mashayekhan, S.M. HosseiniArdali, Mathematical modeling of a slurry bubble column reactor for hydrodesulfurization of diesel fuel:Single- and two-bubble configurations, Chem. Eng. Res. Des. 100(2015) 362-376. [14] Y. Liu, S. Song, D. Xuan, W. Huang, Diesel ultra-deep hydrodesulfurization over trimetallic WMoNi catalysts by liquid-phase preparation method in slurry bed reactor, Energy Fuel 31(7) (2017) 7372-7381. [15] H. Xiang, T. Wang, Kinetic study of hydrodesulfurization of coker gas oil in a slurry reactor, Front. Chem. Sci. Eng. 7(2) (2013) 139-144. [16] C.J. Calderón, J. Ancheyta, Dynamic modeling and simulation of a slurry-phase reactor for hydrotreating of oil fractions, Energy Fuel 31(5) (2017) 5691-5700. [17] H. Ortiz-Moreno, J. Ramírez, F. Sanchez-Minero, R. Cuevas, J. Ancheyta, Hydrocracking of Maya crude oil in a slurry-phase batch reactor. II. Effect of catalyst load, Fuel 130(2014) 263-272. [18] M.K. Andari, F. AbuSeedo, A. Stanislaus, H.M. Qabazard, Kinetics of individual sulfur compounds in deep hydrodesulfurization of Kuwait diesel oil, Fuel 75(14) (1996) 1664-1670. [19] N.K. Nag, A.V. Sapre, D.H. Broderick, B.C. Gates, Hydrodesulfurization of polycyclic aromatics catalyzed by sulfided CoOMoO3γ-Al2CO3:The relative reactivities, J. Catal. 57(3) (1979) 509-512. [20] M. Egorova, Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over sulfided NiMo/γ-Al2CO3, CoMo/γ-Al2CO3, and Mo/γ-Al2CO3 catalysts, J. Catal. 225(2) (2004) 417-427. [21] R.J. Hou, K. Chang, J.G.G. Chen, T.F. Wang, Replacing precious metals with carbide catalysts for hydrogenation reactions, Top. Catal. 58(4-6) (2015) 240-246. [22] M. Breysse, M. Cattenot, T. Decamp, R. Frety, C. Gachet, M. Lacroix, C. Leclercq, L. de Mourgues, J.L. Portefaix, M. Vrinat, Influence of sulphidation conditions on the properties of NiW/Al2CO3 hydrotreating catalysts, Catal. Today 4(1) (1988) 39-55. [23] J.C. Duchet, J.C. Lavalley, S. Housni, D. Ouafi, J. Bachelier, M. Lakhdar, A. Mennour, Carbon monoxide and oxygen chemisorption and functionalities of sulphided NiW/Al2CO3 hydrotreating catalysts, Catal. Today 4(1) (1988) 71-96. [24] C.H. Kim, W.L. Yoon, I.C. Lee, S.I. Woo, The effect of Ni loading and the sulfidation temperature on the structure and catalytic activity of NiW hydrodesulfurization catalysts, Appl. Catal., B 144(1-2) (1996) 159-175. [25] B. Scheffer, N.J.J. Dekker, P.J. Mangnus, J.A. Moulijn, A temperature-programmed reduction study of sulfided CoMo/Al2CO3 hydrodesulfurization catalysts, J. Catal. 121(1) (1990) 31-46. [26] F. Bataille, J.L. Lemberton, P. Michaud, G. Pérot, M. Vrinat, M. Lemaire, E. Schulz, M. Breysse, S. Kasztelan, Alkyldibenzothiophenes hydrodesulfurization-promoter effect, reactivity and reaction mechanism, J. Catal. 191(2) (2000) 409-422. [27] D.D. Li, Hydrotreating Technology and Engineering, China Sinopec Press, Beijing, 2004. [28] H. Li, Q. Sun, X. Wang, Analysis of difficulties in the operation of fixed-bed residue hydrotreating unit and countermeasures, Pet. Ref. Eng. 48(12) (2018) 25-29. |