[1] T. Kourti, J.F. MacGregor, Multivariate SPC methods for process and product monitoring, J.qual.tech 28(1996) 409-428. [2] Z. Ge, Process data analytics via probabilistic latent variable models:a tutorial review, Ind. Eng. Chem. Res. 57(2018) 12646-12661. [3] S.J. Qin, Statistical process monitoring:basics and beyond, J. Chemom. 17(2003) 480-502. [4] J. Feng, J. Wang, H. Zhang, Z. Han, Fault diagnosis method of joint fisher discriminant analysis based on the local and global manifold learning and its kernel version, IEEE Trans. Autom. Sci. Eng. 13(2016) 122-133. [5] Q. Jiang, X. Yan, B. Huang, Review and perspectives of data-driven distributed monitoring for industrial plant-wide processes, Ind. Eng. Chem. Res. 58(2019) 12899-12912. [6] D.H. Hwang, C. Han, Real-time monitoring for a process with multiple operating modes, Control. Eng. Pract. 7(1999) 891-902. [7] S. Lane, E.B. Martin, R. Kooijmans, A.J. Morris, Performance monitoring of a multiproduct semi-batch process, J. Process Control 11(2001) 1-11. [8] H. Ma, H. Yi, H. Shi, A novel local neighborhood standardization strategy and its application in fault detection of multimode processes, Chemom. Intell. Lab. Syst. 118(2012) 287-300. [9] C. Tong, A. Palazoglu, X. Yan, An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding, J. Process Control 23(2013) 1497-1507. [10] Y. Yang, Y. Ma, B. Song, H. Shi, An aligned mixture probabilistic principal component analysis for fault detection of multimode chemical processes, Chin. J. Chem. Eng. 23(2015) 1357-1363. [11] S. Wold, Exponentially weighted moving principal components analysis and projections to latent structures, Chemom. Intell. Lab. Syst. 23(1994) 149-161. [12] H. Dae, Y.H. Lee, G. Lee, C. Han, Robust recursive principal component analysis modeling for adaptive monitoring, Ind. Eng. Chem. Res. 45(2006) 696-703. [13] S.W. Choi, E.B. Martin, A.J. Morris, I.B. Lee, Adaptive multivariate statistical process control for monitoring time-varying processes, Ind. Eng. Chem. Res. 45(2006) 3108-3118. [14] Z. Ge, Z. Song, Online monitoring of nonlinear multiple mode processes based on adaptive local model approach, Control. Eng. Pract. 16(2008) 1427-1437. [15] M. Kano, S. Hasebe, I. Hashimoto, H. Ohno, Evolution of multivariate statistical process control:application of independent component analysis and external analysis, Comput. Chem. Eng. 28(2004) 1157-1166. [16] Y.H. Lee, H.D. Jin, C. Han, On-line process state classification for adaptive monitoring, Ind. Eng. Chem. Res. 45(2006) 3095-3107. [17] K.C. Yoo, K. Villez, I.B. Lee, C. Rosén, P.A. Vanrolleghem, Multi-model statistical process monitoring and diagnosis of a sequencing batch reactor, Biotechnol. Bioeng. 96(2007) 687-701. [18] J. Liu, Modeling a large-scale nonlinear system using adaptive Takagi-Sugeno fuzzy model on PCA subspace, Ind. Eng. Chem. Res. 46(2007) 788-800. [19] S.W. Choi, J.H. Park, I.B. Lee, Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis, Comput. Chem. Eng. 28(2004) 1377-1387. [20] Y. Jie, S.J. Qin, Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models, AIChE J. 54(2008) 1811-1829. [21] X. Xie, H. Shi, Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models, Ind. Eng. Chem. Res. 51(2012) 5497-5505. [22] J. Yu, A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes, Chem. Eng. Sci. 68(2012) 506-519. [23] J. Yu, A new fault diagnosis method of multimode processes using Bayesian inference based Gaussian mixture contribution decomposition, Eng. Appl. Artif. Intell. 26(2013) 456-466. [24] Q. Jiang, B. Huang, X. Yan, GMM and optimal principal components-based Bayesian method for multimode fault diagnosis, Comput. Chem. Eng. 84(2016) 338-349. [25] S. Ren, Z. Song, M. Yang, J. Ren, A novel multimode process monitoring method integrating LCGMM with modified LFDA, Chin. J. Chem. Eng. 23(2015) 1970-1980. [26] W. Sun, A. Palazoğlu, J.A. Romagnoli, Detecting abnormal process trends by waveletdomain hidden Markov models, AIChE J. 49(2003) 140-150. [27] A. Bakhtazad, A. Palazoglu, J.A. Romagnoli, Detection and classification of abnormal process situations using multidimensional wavelet domain hidden Markov trees, Comput. Chem. Eng. 24(2000) 769-775. [28] J. Chen, W.J. Chang, Applying wavelet-based hidden Markov tree to enhancing performance of process monitoring, Chem. Eng. Sci. 60(2005) 5129-5143. [29] Z. Ge, Z. Song, Maximum-likelihood mixture factor analysis model and its application for process monitoring, Chemom. Intell. Lab. Syst. 102(2010) 53-61. [30] Z. Ge, Z. Song, Mixture Bayesian regularization method of PPCA for multimode process monitoring, AIChE J. 56(2010) 2838-2849. [31] M. Rashid, J. Yu, Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection, Ind. Eng. Chem. Res. 51(2012) 5506-5514. [32] Q. Jiang, X. Yan, B. Huang, Neighborhood variational bayesian multivariate analysis for distributed process monitoring with missing data, IEEE Trans. Control Syst. Technol. 27(6) (2019) 2330-2339. [33] Q. Jiang, X. Yan, B. Huang, Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference, IEEE Trans. Ind. Electron. 63(2016) 377-386. [34] Q. Jiang, F. Gao, H. Yi, X. Yan, Multivariate statistical monitoring of key operation units of batch processes based on time-slice CCA, IEEE Trans. Control Syst. Technol. 27(3) (2019) 1368-1375. [35] M.A.T. Figueiredo, A.K. Jain, Unsupervised learning of finite mixture models, IEEE Trans. Pattern Anal. Mach. Intell. 24(2002) 381-396. [36] F. Qi, B. Huang, E.C. Tamayo, A Bayesian approach for control loop diagnosis with missing data, AIChE J. 56(2010) 179-195. [37] G. Birol, C. Ündey, A. Çinar, A modular simulation package for fed-batch fermentation:penicillin production, Comput. Chem. Eng. 26(2002) 1553-1565. [38] J.M. Lee, C.K. Yoo, I.B. Lee, Statistical process monitoring with independent component analysis, J. Process Control 14(2004) 467-485. [39] X. Yan, Q. Jiang, Multimode process monitoring using variational Bayesian inference and canonical correlation analysis, IEEE Trans. Autom. Sci. Eng. 16(2019) 1814-1824. |