[1] Y. Liu, M. Geier, A. Molina, C. Shaddix, Pulverized coal stream ignition delay under conventional and oxy-fuel combustion conditions, Int. J. Greenhouse Gas Control 5(Suppl. 1) (2011) S36-S46. [2] D. Glushkov, S. Lyrshchikov, S. Shevyrev, P. Strizhak, Burning properties of slurry based on coal and oil processing waste, Energy Fuel 30(4) (2016) 3441-3450. [3] J. Adánez, A. Cuadrat, A. Abad, P. Gayán, L.F. de Diego, F. Garćıa-Labiano, Ilmenite activation during consecutive redox cycles in chemical-looping combustion, Energy Fuel 24(2) (2010) 1402-1413. [4] R. Essenhigh, M. Misra, D. Shaw, Ignition of coal particles:a review, Combust. Flame 77(1) (1989) 3-30. [5] D. Glushkov, S. Syrodoy, A.Z.P. Strizhak, Ignition of promising coal-water slurry containing petrochemicals:analysis of key aspects, Fuel Process. Technol. 148(2016) 224-235. [6] R. Egorov, R. Taburchinov, A. Zaitsev, Efficiency of different heat exchange mechanisms for ignition of coal-water compositions, Energy Fuel 33(8) (2019) 7830-7834. [7] M. Halstead, L. Kirsch, C. Quinn, The autoignition of hydrocarbon fuels at high temperatures and pressures-fitting of a mathematical model, Combust. Flame 30(C) (1977) 45-60. [8] S. Dooley, H. Curran, J. Simmie, Autoignition measurements and a validated kinetic model for the biodiesel surrogate, methyl butanoate, Combust. Flame 153(1-2) (2008) 2-32. [9] L. Zhou, L. Hu, Advances in les of two-phase combustion (ii) les of complex gasparticle flows and coal combustion, Chin. J. Chem. Eng. 20(4) (2012) 609-616. [10] K. Yuan, L. Chen, C. Wu, Study on characteristics of different types of nozzles for coal-water slurry atomization, J. Therm. Sci. 10(4) (2001) 331-335. [11] J. Deng, Z. Ding, D. Yuan, Erosion wear mechanisms of coalwater-slurry (cws) ceramic nozzles in industry boilers, Mater. Sci. Eng. A 417(1-2) (2006) 1-7. [12] M. Idris, U. Renz, Two colour pyrometer technique for coal particle temperature measurements in pressurised pulverised coal flame, J. Energy Inst. 80(4) (2007) 185-191. [13] Y. Nugroho, A. McIntosh, B. Gibbs, Low-temperature oxidation of single and blended coals, Fuel 79(15) (2000) 1951-1961. [14] A. Gani, K. Morishita, K. Nishikawa, I. Naruse, Characteristics of co-combustion of low-rank coal with biomass, Energy Fuel 19(4) (2005) 1652-1659. [15] D. Glushkov, P. Strizhak, M. Chernetskii, Organic coal-water fuel:problems and advances (review), Therm. Eng. 63(10) (2016) 707-717. [16] L. Guo, M. Zhai, Z. Wang, Y. Zhang, P. Dong, Comparison of bituminous coal and lignite during combustion:combustion performance, coking and slagging characteristics, J. Energy Inst. 92(3) (2019) 802-812. [17] N. Khan, N. Abas, A. Kalair, Pulsed and continuous wave (CW) lasers in the oil, gas, coal and ignition industries, Laser Eng. 30(3-4) (2015) 137-157. [18] T.H. Dubaniewicz Jr., K.L. Cashdollar, G.M. Green, Continuous wave laser ignition thresholds of coal dust clouds, J. Laser Appl. 15(3) (2003) 184-191. [19] B.P. Aduev, D.R. Nurmukhametov, Ya.V. Kraft, Z.R. Ismagilov, Ignition of different metamorphic grade coals by freerunning laser pulses, Opt. Spectrosc. 128(2020) 429-435. [20] R. Egorov, A. Zaitsev, E. Salgansky, Activation of the fuels with low reactivity using the high-power laser pulses, Energies 11(11) (2018) 3167. [21] R. Egorov, T. Valiullin, P. Strizhak, Energetic and ecological effect of small amount of metalline powders used for doping waste-derived fuels, Combust. Flame 193(2018) 335-343. [22] D.-K. Zhang, Laser-induced ignition of pulverized fuel particles, Combust. Flame 90(2) (1992) 134-142. [23] J. Chen, M. Taniguchi, K. Narato, K. Ito, Laser ignition of pulverized coals, Combust. Flame 97(1) (1994) 107-117. [24] B. Aduev, D. Nurmukhametov, N. Nelyubina, R. Kovalev, A. Zaostrovskii, Z. Ismagilov, Laser ignition of low-rank coal, Russian J. Phys. Chem. B 10(6) (2016) 963-965. [25] T.L. Bergman, F.P. Incropera, D.P. DeWitt, A.S. Lavine, Fundamentals of Heat and Mass Transfer, 7th ed. Wiley, Hoboken, NJ, USA, 2011. [26] G. Murastov, V. Tsipilev, V. Ovchinnikov, A. Yakovlev, About laser heat absorbing impurities in the transparence matrix of pentaerythritol tetranitrate, J. Phys. Conf. Ser. 830(2017) 012155. [27] K.M. Nashold, D.P. Walter, Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions, J. Opt. Soc. Am. B 12(7) (1995) 1228-1237. [28] B.J. Skrifvars, M. Hupa, R. Backman, M. Hiltunen, Sintering mechanisms of fbc ashes, Fuel 73(2) (1994) 171-176. [29] U.S. Im, J. Kim, B.R. Lee, D.H. Peck, D.H. Jung, Manufacture of high density carbon blocks by self-sintering coke produced via a two-stage heat treatment of coal tar, Heliyon 5(3) (2019) e01341. |