[1] Z. Wang, J. Huang, Q. Wang, L. Hou, G. Zhang, Experimental study of microwave resonance plasma ignition of methane-air mixture in a constant volume cylinder, Combust. Flame 162(6) (2015) 2561-2568. [2] B.N. Ganguly, Hydrocarbon combustion enhancement by applied electric field and plasma kinetics, Plasma Phys. Control. Fusion 49(12B) (2007) B239-B246. [3] G. Lou, A. Bao, M. Nishihara, S. Keshav, Y.G. Utkin, J.W. Rich, W.R. Lempert, I.V. Adamovich, Ignition of premixed hydrocarbon-air flows by repetitively pulsed, nanosecond pulse duration plasma, Proc. Combust. Inst. 31(2) (2007) 3327-3334. [4] W. Kim, M.G. Mungal, M.A. Cappelli, The role of in situ reforming in plasma enhanced ultra lean premixed methane/air flames, Combust. Flame 157(2) (2010) 374-383. [5] Y. Ju, W. Sun, Plasma assisted combustion:Dynamics and chemistry, Prog. Energy Combust. (48) (2015) 21-83. [6] W. Tan, T.A. Grotjohn, Modelling the electromagnetic field and plasma discharge in a microwave plasma diamond deposition reactor, Diam. Relat. Mater. 4(9) (1995) 1145-1154. [7] S. Nagaraja, V. Yang, Z. Yin, I. Adamovich, Ignition of hydrogen-air mixtures using pulsednanosecond dielectric barrier plasma discharges in plane-to-plane geometry, Combust. Flame 161(4) (2014) 1026-1037. [8] L.A. Rosocha, D.M. Coates, D. Platts, S. Stange, Plasma-enhanced combustion of propane using a silent discharge, Phys. Plasmas 11(5) (2004) 2950-2956. [9] N. Chintala, A. Bao, G. Lou, I.V. Adamovich,Measurements of combustion efficiency in nonequilibrium RF plasma-ignited flows, Combust. Flame 144(4) (2006) 744-756. [10] F. Wang, J.B. Liu, J. Sinibaldi, C. Brophy, A. Kuthi, C. Jiang, P. Ronney, M.A. Gundersen, Transient plasma ignition of quiescent and flowing air/fuel mixtures, IEEE Ttrans. Plasma Sci. 33(2) (2005) 844-849. [11] J. Liu, F. Wang, G. Li, A. Kuthi, E.J. Gutmark, P.D. Ronney, M.A. Gundersen, Transient plasma ignition, IEEE Trans. Plasma Sci. 33(2) (2005) 326-327. [12] W. Kim, J. Snyder, J. Cohen, Plasma assisted combustor dynamics control, Proc. Combust. Inst. 35(3) (2015) 3479-3486. [13] S. Nagaraja, T. Li, J.A. Sutton, I.V. Adamovich, V. Yang, Nanosecond plasma enhanced H2/O2/N2 premixed flat flames, Proc. Combust. Inst. 35(3) (2015) 3471-3478. [14] N.L. Aleksandrov, S.V. Kindysheva, E.N. Kukaev, S.M. Starikovskaya, A.Y. Starikovskii, Simulation of the ignition of a methane-air mixture by a high-voltage nanosecond discharge, Plasma Phys. Rep. 35(10) (2009) 867-882. [15] I.N. Kosarev, N.L. Aleksandrov, S.V. Kindysheva, S.M. Starikovskaya, A.Y. Starikovskii, Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma:CH4-containing mixtures, Combust. Flame 154(3) (2008) 569-586. [16] S. Nagaraja, W. Sun, V. Yang, Effect of non-equilibrium plasma on two-stage ignition of n-heptane, Proc. Combust. Inst. 35(3) (2015) 3497-3504. [17] W. Sun, M. Uddi, S.H. Won, T. Ombrello, C. Carter, Y. Ju, Kinetic effects of nonequilibrium plasma-assisted methane oxidation on diffusion flame extinction limits, Combust. Flame 159(1) (2012) 221-229. [18] A. Bao, Y.G. Utkin, S. Keshav, G. Lou, I.V. Adamovich, Ignition of ethylene-air and methane-air flows by low-temperature repetitively pulsed nanosecond discharge plasma, IEEE Trans. Plasma Sci. 35(6) (2007) 1628-1638. [19] I.N. Kosarev, S.V. Kindysheva, N.L. Aleksandrov, A.Y. Starikovskiy, Ignition of ethanolcontaining mixtures excited by nanosecond discharge above self-ignition threshold, Combust. Flame 162(1) (2015) 50-59. [20] J. Han, H. Yamashita, Numerical study of the effects of non-equilibrium plasma on the ignition delay of a methane-air mixture using detailed ion chemical kinetics, Combust. Flame 161(8) (2014) 2064-2072. [21] M.S. Bak, H. Do, M.G. Mungal, M.A. Cappelli, Plasma-assisted stabilization of laminar premixed methane/air flames around the lean flammability limit, Combust. Flame 159(10) (2012) 3128-3137. [22] T. Ombrello, S.H. Won, Y. Ju, S. Williams, Flame propagation enhancement by plasma excitation of oxygen. Part II:Effects of O2(a1Δg), Combust. Flame 157(10) (2010) 1916-1928. [23] A. Starikovskiy, N. Aleksandrov, Plasma-assisted ignition and combustion, Prog. Energy Combust. 39(1) (2013) 61-110. [24] Phelps database, www.lxcat.net (retrieved on August 11, 2015). [25] IST-Lisbon database, www.lxcat.net (retrieved on August 11, 2015). [26] TRINITI database, www.lxcat.net (retrieved on August 11, 2015). [27] M. Capitelli, C.M. Ferreira, B.F. Gordiets, A.I. Osipov, Plasma kinetics in atmospheric gases, Springer, Berlin, Germany, 2000. [28] M.F. Golde, G.H. Ho, W. Tao, J.M. Thomas, Collisional deactivation of N2(A3∑u+, v=0-6) by CH4, CF4, H2, H2O, CF3Cl, and CF2HCl, J. Phys. Chem. 93(3) (1989) 1112-1118. [29] M. Uddi, N. Jiang, I.V. Adamovich, W.R. Lempert, Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence, J. Phys. D. Appl. Phys. 42(7) (2009) 1-18. [30] L.G. Piper, Energy transfer studies on N2(X1∑g+,v) and N2(B3Πg), J. Chem. Phys. 97(1) (1992) 270-275. [31] H. Umemoto, R. Ozeki, M. Ueda, M. Oku, Reactions of N2(a'1∑u-) with H2, CH4, and their isotopic variants:Rate constants and the production yields of H(D) atoms, J. Chem. Phys. 117(12) (2002) 5654-5659. [32] F. Albugues, A. Birot, D. Blanc, H. Brunet, J. Galy, P. Millet, Destruction of the levels C3Πu (v'=0, v'=1) of nitrogen by O2, CO2, CH4 and H2O, J. Chem. Phys. 61(7) (1974) 2695-2699. [33] I.A. Kossyi, A.Y. Kostinsky, A.A. Matveyev, V.P. Silakov, Kinetic scheme of the nonequilibrium discharge in nitrogen-oxygen mixtures, Plasma Sources Sci. Technol. 1(3) (1992) 207-220. [34] G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr., V.V. Lissianski, Z. Qin, http://www.me.berkeley.edu/gri_mech/. [35] S.Pancheshnyi,B.Eismann,G.J.M.Hagelaar,L.C.Pitchford,ComputercodeZDPlasKin, http://www.zdplaskin.laplace.univ-tlse. fr University of Toulouse, LAPLACE, CNRSUPS-INP, Toulouse, France, 2008. [36] G.J.M. Hagelaar, L.C. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma Sources Sci. Technol. 14(4) (2005) 722-733. [37] A.H. Markosyan, A. Luque, F.J. Gordillo-Vázquez, U. Ebert, PumpKin:A tool to find principal pathways in plasma chemical models, Comput. Phys. Commun. 185(10) (2014) 2697-2702. [38] W.C. Gardiner Jr. (Ed.), Combustion chemistry, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984. [39] Y. Zhang, Z. Huang, L. Wei, J. Zhang, C.K. Law, Experimental and modeling study on ignition delays of lean mixtures of methane, hydrogen, oxygen, and argon at elevated pressures, Combust. Flame 159(3) (2012) 918-931. |