[1] X. Zhu, H. Wei, M. Hou, Q. Wang, X. You, L. Li, Thermodynamic behavior and flotation kinetics of an ionic liquid microemulsion collector for coal flotation, Fuel 262(2020), 116627. [2] D.C. Baker, A. Attar, Sulfur pollution from coal combustion. Effect of the mineral components of coal on the thermal stabilities of sulfated ash and calcium sulfate, Environ. Sci. Technol. 15(1981) 288-293. [3] X. Zhu, M. He, W. Zhang, H. Wei, X. Lyu, Q. Wang, X. You, L. Li, Formulation design of microemulsion collector based on gemini surfactant in coal flotation, J. Clean. Prod. 257(2020), 120496. [4] X. Zhu, Y. Zhang, Y. Zhang, Z. Yan, C. Nie, X. Lyu, Y. Tao, J. Qiu, L. Li, Flotation dynamics of metal and non-metal components in waste printed circuit boards, J. Hazard. Mater. 392(2020), 122322. [5] J.-z. Liu, R.-k. Wang, F.-y. Gao, J.-h. Zhou, K.-f. Cen, Rheology and thixotropic properties of slurry fuel prepared using municipal wastewater sludge and coal, Chem. Eng. Sci. 76(2012) 1-8. [6] S. Fan, Y. Wang, Z. Wang, J. Tang, J. Tang, X. Li, Removal of methylene blue from aqueous solution by sewage sludge-derived biochar:adsorption kinetics, equilibrium, thermodynamics and mechanism, J. Environ. Chem. Eng. 5(2017) 601-611. [7] H. Chang, H. Zhang, Z. Jia, L. Xing, W. Gao, W.L. Wei, Wettability of coal pitch surface by aqueous solutions of cationic Gemini surfactants, Colloids Surf. A Physicochem. Eng. Asp. 494(2016) (S092777571630022X). [8] G. Ni, Z. Li, H. Xie, The mechanism and relief method of the coal seam water blocking effect (WBE) based on the surfactants, Powder Technol. 323(2018) 60-68. [9] S. Liu, X. Liu, Z. Guo, Y. Liu, J. Guo, S. Zhang, Wettability modification and restraint of moisture re-adsorption of lignite using cationic gemini surfactant, Colloids Surf. A Physicochem. Eng. Asp. 508(2016) 286-293. [10] J. Guo, L. Zhang, S. Liu, B. Li, Effects of hydrophilic groups of nonionic surfactants on the wettability of lignite surface:molecular dynamics simulation and experimental study, Fuel 231(2018) 449-457. [11] F.H. Stillinger, A. Rahman, Improved simulation of liquid water by molecular dynamics, J. Chem. Phys. 60(1974) 1545-1557. [12] K. Kremer, G.S. Grest, Dynamics of entangled linear polymer melts:a molecular-dynamics simulation, J. Chem. Phys. 92(1990) 5057-5086. [13] F. Xiao, B.Q. Yan, X.Y. Zou, X.Q. Cao, L. Dong, X.J. Lyu, L. Li, J. Qiu, P. Chen, S.G. Hu, Q.J. Zhang, Study on ionic liquid modified montmorillonite and molecular dynamics simulation, Colloid. Surf. A (2019) 587. [14] B. Smit, L.D.J. Loyens, G.L. Verbist, Simulation of adsorption and diffusion of hydrocarbons in zeolites, Faraday Discuss. 106(1997) 93-104. [15] H. Du, J. Miller, A molecular dynamics simulation study of water structure and adsorption states at talc surfaces, Int. J. Miner. Process. 84(2007) 172-184. [16] M. Gao, X. Li, C. Ren, Z. Wang, Y. Pan, L. Guo, Construction of a multicomponent molecular model of Fugu coal for ReaxFF-MD pyrolysis simulation, Energy Fuel 33(2019) 2848-2858. [17] B. Chen, Z.J. Diao, Y.L. Zhao, X.X. Ma, A ReaxFF molecular dynamics (MD) simulation for the hydrogenation reaction with coal related model compounds, Fuel 154(2015) 114-122. [18] X. You, M. He, X. Zhu, H. Wei, X. Cao, P. Wang, L. Li, Influence of surfactant for improving dewatering of brown coal:a comparative experimental and MD simulation study, Sep. Purif. Technol. 210(2019) 473-478. [19] Y. Xia, R. Zhang, Y. Xing, X. Gui, Improving the adsorption of oily collector on the surface of low-rank coal during flotation using a cationic surfactant:an experimental and molecular dynamics simulation study, Fuel 235(2019) 687-695. [20] X. You, M. He, W. Zhang, H. Wei, X. Lyu, Q. He, L. Li, Molecular dynamics simulations of nonylphenol ethoxylate on the Hatcher model of subbituminous coal surface, Powder Technol. 332(2018) 323-330. [21] Y. Tu, P. Feng, Y. Ren, Z. Cao, R. Wang, Z. Xu, Adsorption of ammonia nitrogen on lignite and its influence on coal water slurry preparation, Fuel 238(2019) 34-43. [22] M. Zhou, X. Qiu, D. Yang, H. Lou, X. Ouyang, High-performance dispersant of coal- water slurry synthesized from wheat straw alkali lignin, Fuel Process. Technol. 88(2007) 375-382. [23] H.-Y. Lu, X.-F. Li, C.-Q. Zhang, W.-H. Li, D.-P. Xu, β-Cyclodextrin grafted on alkali lignin as a dispersant for coal water slurry, Energ. Sources Part A:Recovery, Utilization, and Environmental Effects 41(2019) 1716-1724. [24] M. Yan, D. Yang, Y. Deng, P. Chen, H. Zhou, X. Qiu, Influence of pH on the behavior of lignosulfonate macromolecules in aqueous solution, Colloids Surf. A Physicochem. Eng. Asp. 371(2010) 50-58. [25] S. Wang, J. Wu, J. Liu, N. Li, X. Zeng, K. Cen, Effect of ammonia nitrogen and low-molecular-weight organics on the adsorption of additives on coal surface:a combination of experiments and molecular dynamics simulations, Chem. Eng. Sci. 205(2019) 134-142. [26] S. Liu, M. Chen, X. Cao, G. Li, D. Zhang, M. Li, N. Meng, J. Yin, Y. B, Chromium (VI) removal from water using cetylpyridinium chloride (CPC)-modified montmorillonite, Sep. Purif. Technol. 241(2020), 116732. [27] X. You, M. He, X. Cao, P. Wang, J. Wang, L. Li, Molecular dynamics simulations of removal of nonylphenol pollutants by graphene oxide:experimental study and modelling, Appl. Surf. Sci. 475(2019) 621-626. [28] Z. Zhang, C. Wang, K. Yan, Adsorption of collectors on model surface of wiser bituminous coal:a molecular dynamics simulation study, Miner. Eng. 79(2015) 31-39. [29] P.G. Hatcher, Chemical structural models for coalified wood (vitrinite) in low rank coal, Org. Geochem. 16(1990) 959-968. [30] J.P. Mathews, A.C. van Duin, A.L. Chaffee, The utility of coal molecular models, Fuel Process. Technol. 92(2011) 718-728. [31] X. Lyu, X. You, M. He, W. Zhang, H. Wei, L. Li, Q. He, Adsorption and molecular dynamics simulations of nonionic surfactant on the low rank coal surface, Fuel 211(2018) 529-534. [32] M.K. Konduri, P. Fatehi, Adsorption and dispersion performance of oxidized sulfomethylated kraft lignin in coal water slurry, Fuel Process. Technol. 176(2018) 267-275. [33] P. Phulkerd, N. Thongchul, K. Bunyakiat, A. Petsom, Coal water slurry using dispersant synthesized from cashew nut shell liquid (CNSL), Fuel Process. Technol. 119(2014) 256-262. [34] M. Zhou, X. Qiu, D. Yang, H. Lou, Properties of different molecular weight sodium lignosulfonate fractions as dispersant of coal-water slurry, J. Dispers. Sci. Technol. 27(2006) 851-856. [35] Y. Li, Z.-H. Wang, Z.-Y. Huang, J.-Z. Liu, J.-H. Zhou, K.-F. Cen, Effect of pyrolysis temperature on lignite char properties and slurrying ability, Fuel Process. Technol. 134(2015) 52-58. [36] X. Zhu, H. Zhang, C. Nie, X. Liu, X. Lyu, Y. Tao, J. Qiu, L. Li, G. Zhang, Recycling metals from -0.5 mm waste printed circuit boards by flotation technology assisted by ionic renewable collector, J. Clean. Prod. 258(2020), 120628. [37] R. Wang, Q. Ma, Z. Zhao, X. Ye, Q. Jin, Z. Zhao, J. Liu, Adsorption of surfactants on coal surfaces in the coking wastewater environment:kinetics and effects on the slurrying properties of coking wastewater-coal slurry, Ind. Eng. Chem. Res. 58(2019) 12825-12834. [38] N.R. Tummala, L. Shi, A. Striolo, Molecular dynamics simulations of surfactants at the silica-water interface:anionic vs nonionic headgroups, J. Colloid Interface Sci. 362(2011) 135-143. [39] J.P. Zhang, Y.Y. Zhang, L. Hui, J.X. Gao, X.L. Cheng, Molecular dynamics investigation of thermite reaction behavior of nanostructured Al/SiO2 system, Acta Phys. Sin. 63(2014) 086401-086446. [40] C.-G. Tao, H.-J. Feng, J. Zhou, L.-H. Lv, X.-H. Lu, Molecular simulation of oxygen adsorption and diffusion in polypropylene, Acta Phys. -Chim. Sin. 25(2009) 1373-1378. [41] H. Zhao, Y. Wang, Y. Yang, X. Shu, H. Yan, Q. Ran, Effect of hydrophobic groups on the adsorption conformation of modified polycarboxylate superplasticizer investigated by molecular dynamics simulation, Appl. Surf. Sci. 407(2017) 8-15. |