[1] IEA, The Role of Gas in Today's Energy Transitions, 2019, https://www.iea.org/reports/the-role-of-gas-in-todays-energy-transitions. [2] IGU, 2020 World LNG Report, Barcelona, 2020. [3] A.Q. Gilbert, B.K. Sovacool, Carbon pathways in the global gas market:An attributional life cycle assessment of the climate impacts of liquefied natural gas exports from the United States to Asia, Energy Policy 120(2018) 635-643. [4] V.A. Shcherba, A.P. Butolin, A. Zieliński, V.A. Shcherba, Current state and prospects of shale gas production, IOP Conf. Ser.:Earth Environ. Sci. 272(3) (2019) 032020. [5] E.A. Kort, M.L. Smith, L.T. Murray, A.R. Brandt, J. Peischl, T.B. Ryerson, C. Sweeney, K. Travis, Fugitive emissions from the Bakken shale illustrate role of shale production in global ethane shift, Geophys. Res. Lett. 43(9) (2016) 4617-4623. [6] D. Kim, T. Gundersen, Use of exergy efficiency for the optimization of LNG processes with NGL extraction, Energy 197(2020) 117232. [7] Y.Q. Huang, Y.B. Zhang, H.B. Xing, Separation of light hydrocarbons with ionic liquids:A review, Chin. J Chem. Eng. 27(2019) 1374-1382. [8] H.J. Bian, W.D. Xu, X.X. Li, Y. Qian, A novel process for natural gas liquids recovery from oil field associated gas with liquefied natural gas cryogenic energy utilization, Chin. J Chem. Eng. 19(3) (2011) 452-461. [9] A. Vatani, M. Mehrpooya, B. Tirandazi, A novel process configuration for coproduction of NGL and LNG with low energy requirement, Chem. Eng. Process. Process Intensif. 63(2013) 16-24. [10] B. Ghorbani, M.H. Hamedi, M. Amidpour, Development and optimization of an integrated process configuration for natural gas liquefaction (LNG) and natural gas liquids (NGL) recovery with a nitrogen rejection unit (NRU), J. Nat. Gas. Sci. Eng. 34(2016) 590-603. [11] B. Ghorbani, M.H. Hamedi, M. Amidpour, R. Shirmohammadi, Implementing absorption refrigeration cycle in lieu of DMR and C3MR cycles in the integrated NGL, LNG and NRU unit, Int. J. Refrig. 77(2017) 20-38. [12] B. Ghorbani, M.H. Hamedi, M. Amidpour, M. Mehrpooya, Cascade refrigeration systems in integrated cryogenic natural gas process (natural gas liquids (NGL), liquefied natural gas (LNG) and nitrogen rejection unit (NRU)), Energy 115(2016) 88-106. [13] M. Mehrpooya, M. Hossieni, A. Vatani, Novel LNG-based integrated process configuration alternatives for coproduction of LNG and NGL, Ind. Eng. Chem. Res. 53(45) (2014) 17705-17721. [14] C. Jin, Y. Lim, Optimization and economic evaluation of integrated natural gas liquids (NGL) and liquefied natural gas (LNG) processing for lean feed gas, Appl. Therm. Eng. 149(2019) 1265-1273. [15] B. Ghorbani, R. Shirmohammadi, M. Mehrpooya, A novel energy efficient LNG/NGL recovery process using absorption and mixed refrigerant refrigeration cycles-economic and exergy analyses, Appl. Therm. Eng. 132(2018) 283-295. [16] B. Ghorbani, M. Mehrpooya, R. Shirmohammadi, M.H. Hamedi, A comprehensive approach toward utilizing mixed refrigerant and absorption refrigeration systems in an integrated cryogenic refrigeration process, J. Clean. Prod. 179(2018) 495-514. [17] H. Ansarinasab, M. Mehrpooya, Evaluation of novel process configurations for coproduction of LNG and NGL using advanced exergoeconomic analysis, Appl. Therm. Eng. 115(2017) 885-898. [18] H. Uwitonze, I. Lee, K.S. Hwang, lternatives of integrated processes for coproduction of LNG and NGLs recovery, Chem. Eng. Process. 107(2016) 157-167. [19] M.S. Khan, Y.D. Chaniago, M. Getu, M. Lee, Energy saving opportunities in integrated NGL/LNG schemes exploiting:thermal-coupling common-utilities and process knowledge, Chem. Eng. Process. 82(2014) 54-64. [20] M.S. Khan, Y.D. Chaniago, M. Getu, M. Lee, B. Ghorbani, M. Mehrpooya, M.H. Hamedi, M. Amidpour, Exergoeconomic analysis of integrated natural gas liquids (NGL) and liquefied natural gas (LNG) processes, Appl. Therm. Eng. 113(2017) 1483-1495. [21] Y.Q. Luo, L. Kong, X.G. Yuan, A systematic approach for synthesizing a lowtemperature distillation system, Chin. J. Chem. Eng. 23(2015) 789-795. [22] T. He, W.S. Lin, Design and optimization of nitrogen expansion liquefaction processes integrated with ethane separation for high ethane-content natural gas, Appl. Therm. Eng. 173(2020) 115272. [23] T. He, W.S. Lin, A novel propane pre-cooled mixed refrigerant process for coproduction of LNG and high purity ethane, Energy 202(2020) 117784. [24] W. Lee, J. An, J.M. Lee, Y. Lim, Design of single mixed refrigerant natural gas liquefaction process considering load variation, Chem. Eng. Res. Des. 139(2018) 89-103. [25] T.B. He, Z.M. Liu, Y.L. Ju, A.M. Parvez, A comprehensive optimization and comparison of modified single mixed refrigerant and parallel nitrogen expansion liquefaction process for small-scale mobile LNG plant, Energy 167(2019) 1-12. [26] J.L. Zhu, W. Zhang, S.N. Liu, Y.X. Li, M.E. Liu, Q.S. Yin, B. Xie, X.C. Yu, Y. Li, Experiment and dynamic simulation study on propane pre-cooling double nitrogen-expander liquefaction process for medium-pilot LNG plant, Appl. Therm. Eng. (2020) 114994. [27] A. Nawaz, M.A. Qyyum, K. Qadeer, M.S. Khan, A.A. Ahmad, L. Sanggyu, L. Moonyong, Optimization of mixed fluid cascade LNG process using a multivariate Coggins step-up approach:overall compression power reduction and exergy loss analysis, Int. J. Refrig. 104(2019) 189-200. [28] M. Kamalinejad, M. Amidpour, S.M.M. Naeynian, Thermodynamic design of a cascade refrigeration system of liquefied natural gas by applying mixed integer non-linear programming, Chin. J. Chem. Eng. 23(2015) 998-1008. [29] B. Ghorbani, M.H. Hamedi, R. Shirmohammadi, M. Hamedi, M. Mehrpooya, Exergoeconomic analysis and multi-objective Pareto optimization of the C3MR liquefaction process, Sustain. Energy. Techn. 17(2016) 56-67. [30] W. Dam, S.M. Ho, Unusual design considerations drive selection of Sakhalin LNG plant facilities, Oil. Gas. J. 99(40) (2001) 58-68. [31] M.S. Khan, I.A. Karimi, M. Lee, Evolution and optimization of the dual mixed refrigerant process of natural gas liquefaction, Appl. Therm. Eng. 96(2016) 320-329. [32] M. Vikse, H.A.J. Watson, D. Kim, P.I. Barton, T. Gundersen, Optimization of a dual mixed refrigerant process using a nonsmooth approach, Energy 196(2020) 116999. [33] C. Jin, H. Son, Y. Lim, Optimization and economic analysis of liquefaction processes for offshore units, Appl. Therm. Eng. 163(2019) 114334. [34] J.H. Hwang, M.I. Roh, K.Y. Lee, Determination of the optimal operating conditions of the dual mixed refrigerant cycle for the LNG FPSO topside liquefaction process, Comput. Chem. Eng. 49(2013) 25-36. [35] T.B. He, Y.L. Ju, Dynamic simulation of mixed refrigerant process for smallscale LNG plant in skid mount packages, Energy 97(2016) 350-358. [36] M.A. Qyyum, P.L.T. Duong, L.Q. Minh, S. Lee, M. Lee, Dual mixed refrigerant LNG process:uncertainty quantification and dimensional reduction sensitivity analysis, Appl. Energ. 250(2019) 1446-1456. [37] J.D. Bukowski, Y.N. Liu, M.R. Pillarella, S.J. Boccella, Natural gas liquefaction technology for floating LNG facilities, The 17th International Conference and Exhibition on Liquefied Natural Gas (LNG17), Huston, USA, 2013. [38] T.B. He, N. Mao, Z.M. Liu, M.A. Qyyum, M. Lee, A.M. Pravez, Impact of mixed refrigerant selection on energy and exergy performance of natural gas liquefaction processes, Energy 199(2020) 117378. [39] M. Vikse, H.A.J. Watson, D. Kim, P.I. Barton, T. Gunderen, Optimization of a dual mixed refrigerant process using a nonsmooth approach, Energy 196(2020) 116999. |