[1] M.A. Gomez, J. Porteiro, S. Chapela, J.L. Miguez, An Eulerian model for the simulation of the thermal conversion of a single large biomass particle, Fuel 220(2018) 671-681. [2] J. Porteiro, J. Collazo, D. Patino, E. Granada, J.C.M. Gonzalez, J.L. Miguez, Numerical modeling of a biomass pellet domestic boiler, Energy Fuels 23(1) (2009) 1067-1075. [3] D. Shin, S. Choi, The combustion of simulated waste particles in a fixed bed, Combust. Flame 121(1-2) (2000) 167-180. [4] J. Collazo, J. Porteiro, J.L. Miguez, E. Granada, M.A. Gomez, Numerical simulation of a small-scale biomass boiler, Energy Convers. Manage. 64(2012) 87-96. [5] H. Zhou, A.D. Jensen, P. Glarborg, P.A. Jensen, A. Kavaliauskas, Numerical modeling of straw combustion in a fixed bed, Fuel 84(4) (2005) 389-403. [6] R.P.V.D. Lans, L.T. Pedersen, A. Jensen, P. Glarborg, K. Dam-Johansen, Modelling and experiments of straw combustion in a grate furnace, Biomass Bioenerg. 19(3) (2000) 199-208. [7] S.K. Kaer, Numerical modeling of a straw-fired grate boiler, Fuel 83(9) (2004) 1183-1190. [8] H. Rezaei, S. Sokhansanj, X. Bi, C.J. Lim, A. Lau, A numerical and experimental study on fast pyrolysis of single woody biomass particles, Appl. Energy 198(2017) 320-331. [9] J.H. Chen, W.J. Yin, S. Wang, C. Meng, G.B. Yu, T. Hu, F. Lin, Analysis of biomass gasification in bubbling fluidized bed with two-fluid model, J. Renew. Sustain. Energy 8(6) (2016) 063105. [10] Y.B. Yang, V.N. Sharifi, J. Swithenbank, Numerical simulation of the burning characteristics of thermally-thick biomass fuels in packed-beds, Process Saf. Environ. Protect. 83(6) (2005) 549-558. [11] J. Collazo, J. Porteiro, D. Patino, E. Granada, Numerical modeling of the combustion of densified wood under fixed-bed conditions, Fuel 93(1) (2012) 149-159. [12] M.A. Gomez, J. Porteiro, D. Patino, J.L. Miguez, CFD modelling of thermal conversion and packed bed compaction in biomass combustion, Fuel 117(2014) 716-732. [13] M.R. Karim, J. Naser, Numerical study of the ignition front propagation of different pelletised biomass in a packed bed furnace, Appl. Therm. Eng. 128(2017) 772-784. [14] M.A. Gomez, J. Porteiro, D. Patino, J.L. Miguez, Fast-solving thermally thick model of biomass particles embedded in a CFD code for the simulation of fixed-bed burners, Energy Convers. Manage. 105(2015) 30-44. [15] A. Mlonka-Medrala, A. Magdziarz, T. Dziok, M. Sieradzka, W. Nowak, Laboratory studies on the influence of biomass particle size on pyrolysis and combustion using TG GC/MS, Fuel 252(2019) 635-645. [16] J.A.L. Medrano, D.B. Martinez, R.D.L.R. De la Rosa, E.S.C. Javier, G.A. Pedraza, S.C. Flores-Escamilla, Particle pyrolysis modeling and thermal characterization of pecan nutshell, J. Therm. Anal. Calorim. 126(2) (2016) 969-979. [17] V.D. Pham, H.Q. Nguyen, V.V. Tran, L. Nguyen-Dinh, H.D. Hoang, Analytical modelling fast pyrolysis of biomass particles in fluidized bed reactor, International Conference on System Science & Engineering, Ho Chi Minh City, Vietnam, 2017. [18] R. Reschmeier, D. Roveda, D. Mueller, J. Karl, Pyrolysis kinetics of wood pellets in fluidized beds, J. Anal. Appl. Pyrolysis 108(2014) 117-129. [19] D.L. Pyle, C.A. Zaror, Heat transfer and kinetics in the low temperature pyrolysis of solids, Chem. Eng. Sci. 39(1) (1984) 147-158. [20] B. Benkoussas, J.L. Consalvi, B. Porterie, N. Sardoy, J.C. Loraud, Modelling thermal degradation of woody fuel particles, Int. J. Therm. Sci. 46(4) (2007) 319-327. [21] K.M. Bryden, M.J. Hagge, Modeling the combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle, Fuel 82(13) (2003) 1633-1644. [22] D.K. Shen, M.X. Fang, Z.Y. Luo, K.F. Cen, Modeling pyrolysis of wet wood under external heat flux, Fire Saf. J. 42(3) (2007) 210-217. [23] A.K. Sadhukhan, P. Gupta, R.K. Saha, Modelling of pyrolysis of large wood particles, Bioresour. Technol. 100(12) (2009) 3134-3139. [24] A.K. Biswas, K. Umeki, Simplification of devolatilization models for thermallythick particles:differences between wood logs and pellets, Chem. Eng. J. 274(2015) 181-191. |