[1] M.L. Payne, D. Pattillo, R. Miller, C.K. Johnson, Advanced Technology Solutions for Next Generation HPHT Wells, in International Petroleum Technology Conference, International Petroleum Technology Conference, Dubai, U.A.E, 2007. [2] I.K. Gamwo, W.A. Bllrgess, B.D. Morreale, Y. Soong, B.A. Bamgbade, M.A. McHugh, H.O. Baled, R.M. Enick, Y. Wu, D. Taprigal, Status of Equation of State Project at the NETL, in Offshore Technology Conference, Offshore Technology Conference, Houston, Texas, 2014. [3] A. Shadravan, M. Amani, HPHT 101-What petroleum engineers and geoscientists should know about high pressure high temperature wells environment, Energy Sci. Technol. 4 (2) (2012) 36-60. [4] A.L. Lee, Viscosity of Light Hydrocarbons, American Petroleum Institute, 1965. [5] J. Diehl, M. Gondouin, A. Houpeurt, J. Neoschil, M. Thelliez, J.P. Verrien, R. Zurawsky, Viscosity and Density of Light Paraffins, Nitrogen and Carbon Dioxide, CREPS/Geopetrole, 1970. [6] I.j.F. Golub’ev, Viscosity of Gases and Gas Mixtures: a Handbook, Israel Program for Scientific Translations;[available from the US Department of Commerce, Clearinghouse for Federal Scientific and Technical Information, Springfield, Va.], 1970. [7] K. Stephan, Viscosity of Dense Fluids, Springer Science & Business Media, 2013. [8] U. Setzmann, W. Wagner, A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 100 MPa, J. Phys. Chem. Ref. Data 20 (6) (1991) 1061-1155. [9] K. Liu, Y. Wu, M.A. McHugh, H. Baled, R.M. Enick, B.D. Motteale, Equation of state modeling of high-pressure, high-temperature hydrocarbon density data, J. Supercrit. Fluids 55 (2) (2010) 701-711. [10] H. Miyamoto, M. Uematsu, Measurements of vapor pressures from 280 to 369 K and (p, q, T) properties from 340 to 400 K at pressures to 200 MPa for propane, Int. J. Thermophys. 27 (4) (2006) 1052-1060. [11] K.R. Hall, L. Yarborough, A new equation of state for Z-factor calculations, Oil Gas J. 71 (7) (1973) 82-92. [12] P. Dranchuk, H. Abou-Kassem, Calculation of Z factors for natural gases using eqeuations of state, J. Can. Pet. Technol. 14 (03) (1975). [13] M.B. Standing, D.L. Katz, Density of natural gases, Trans. AIME 146 (01) (1942) 140-149. [14] M.G. Martin, J.I. Siepmann, Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes, J. Phys. Chem. B 102 (14) (1998) 2569-2577. [15] S.K. Nath, Molecular simulation of vapor-liquid phase equilibria of hydrogen sulfide and its mixtures with alkanes, J. Phys. Chem. B 107 (35) (2003) 9498-9504. [16] J.G. Harris, K.H. Yung, Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model, J. Phys. Chem. 99 (31) (1995) 12021-12024. [17] J.-P. Ryckaert, G. Ciccotti, H.J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes, J. Comput. Phys. 23 (3) (1977) 327-341. [18] C. Nieto-Draghi, T.de Bruin, J.Perez Pellitero, J.B. Avalos, A.D. Mackie, Thermodynamic and transport properties of carbon dioxide from molecular simulation, J. Chem. Phys. 126 (6) (2007) 064509. [19] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1) (1995) 1-19. [20] C. Murthy, K. Singer, I. McDonald, Interaction site models for carbon dioxide, Mol. Phys. 44 (1) (1981) 135-143. [21] J.J. Potoff, J.I. Siepmann, Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen, AIChE J. 47 (7) (2001) 1676-1682. [22] J.R. Errington, The Development of Novel Simulation Methodologies and Intermolecular Potential Models for Real Fluids, 1999. [23] T.T. Trinh, T.J. Vlugt, S. Kjelstrup, Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: A systematic study of several common force fields, J. Chem. Phys. 141 (13) (2014) 134504. [24] N. Sakoda, M. Uematsu, A thermodynamic property model for fluid phase hydrogen sulfide, Int. J. Thermophys. 25 (3) (2004) 709-737. [25] W. Edward, K. Aziz, Compressibility factor of sour natural gases, Can. J. Chem. Eng. 49 (2) (1971) 267-273. [26] M. Standing, Volumetric and Phase Behavior of Oil Field Hydrocarbon Systems, Society of Petroleum Engineers of AIME. Dallas, Texas, Hydrocarbon Systems, 1977. [27] L. Thomas, R. Hankinson, K. Phillips, Determination of acoustic velocities for natural gas, J. Pet. Technol. 22 (07) (1970) 889-895. [28] R.V. Smith, Practical Natural Gas Engineering, in: PennWell Books, 1990. [29] R. Sutton, Compressibility factors for high-molecular-weight reservoir gases, in: Paper SPE 14265 presented at the SPE Annual Technical Conference and Exhibition, Las Vegas, Nevada, 22-26(1985). September https://doi.org/10.2118/14265-MS. [30] L. Piper, W. McCain Jr., J. Corredor, Compressibility factors for naturally occurring petroleum gases (1993 version), in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 1993, https://doi.org/10.2118/26668-MS. [31] M. Atilhan, P. Patil, S. Ejaz, D. Cristancho, J. Holste, K. Hall, Wide Range, High Accuracy PqT Measurements by Single Sinker Magnetic Suspension Densimeter for Natural Gas-Like Mixtures, in: Proceedings of the 1st Annual Gas Processing Symposium, Elsevier, 2009. [32] G.H. Brunner, Supercritical fluids as solvents and reaction media, Elsevier, 2004. [33] P. Colonna, N. Nannan, A. Guardone, T. Van der Stelt, On the computation of the fundamental derivative of gas dynamics using equations of state, Fluid Phase Equilib. 286 (1) (2009) 43-54. |