中国化学工程学报 ›› 2021, Vol. 29 ›› Issue (3): 113-125.DOI: 10.1016/j.cjche.2020.11.005
• Special Issue on Frontiers of Chemical Engineering Thermodynamics • 上一篇 下一篇
Yuanyue Zhao1,2, Yihui Dong2, Yandong Guo1, Feng Huo2, Fang Yan1, Hongyan He2
收稿日期:
2020-09-13
修回日期:
2020-11-02
出版日期:
2021-03-28
发布日期:
2021-05-13
通讯作者:
Yandong Guo
基金资助:
Yuanyue Zhao1,2, Yihui Dong2, Yandong Guo1, Feng Huo2, Fang Yan1, Hongyan He2
Received:
2020-09-13
Revised:
2020-11-02
Online:
2021-03-28
Published:
2021-05-13
Contact:
Yandong Guo
Supported by:
摘要: The increased concentration of CO2 due to continuous breathing and no discharge of human beings in the manned closed space, like spacecraft and submarines, can be a threat to health and safety. Effective removal of low concentration CO2 from the manned closed space is essential to meet the requirements of long-term space or deep-sea exploration, which is an international frontier and trend. Ionic liquids (ILs), as a widespread and green solvent, already showed its excellent performance on CO2 capture and absorption, indicating its potential application in low concentration CO2 capture. In this review, we first summarized the current methods and strategies for direct capture from low concentration CO2 in both the atmosphere and manned closed spaces. Then, the multi-scale simulation methods of CO2 capture by ionic liquids are described in detail, including screening ionic liquids by COSMO-RS methods, capture mechanism by density functional theory and molecular dynamics simulation, and absorption process by computational fluid dynamics simulation. Lastly, some typical IL-based green technologies for low concentration CO2 capture, such as functionalized ILs, co-solvent systems with ILs, and supported materials based on ILs, are introduced, and analyzed the subtle possibility in manned closed spaces. Finally, we look forward to the technology and development of low concentration CO2 capture, which can meet the needs of human survival in closed space and proposed that supported materials with ionic liquids have great advantages and infinite possibilities in the vital area.
Yuanyue Zhao, Yihui Dong, Yandong Guo, Feng Huo, Fang Yan, Hongyan He. Recent progress of green sorbents-based technologies for low concentration CO2 capture[J]. 中国化学工程学报, 2021, 29(3): 113-125.
Yuanyue Zhao, Yihui Dong, Yandong Guo, Feng Huo, Fang Yan, Hongyan He. Recent progress of green sorbents-based technologies for low concentration CO2 capture[J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 113-125.
[1] K. Wårdell, 46th ESAO Congress 3-7 September 2019 Hannover, Germany Abstracts, Int. J. Artif. Organs 42(8) (2019) 386-474. [2] Q. Ye, J. Jiang, C. Wang, Y. Liu, H. Pan, Y. Shi, Adsorption of low-concentration carbon dioxide on amine-modified carbon nanotubes at ambient temperature, Energy Fuels 26(4) (2012) 2497-2504. [3] R. Serna-Guerrero, A. Sayari, Modeling adsorption of CO2 on aminefunctionalized mesoporous silica. 2: Kinetics and breakthrough curves, Chem. Eng. J. 161(1-2) (2010) 182-190. [4] E.M. Mattox, J.C. Knox, D.M. Bardot, Carbon dioxide removal system for closed loop atmosphere revitalization, candidate sorbents screening and test results, Acta Astronaut. 86(2013) 39-46. [5] N. Politakos, I. Barbarin, T. Cordero-Lanzac, A. Gonzalez, R. Zangi, R. Tomovska, Reduced graphene oxide/polymer monolithic materials for selective CO2 capture, Polymers 12(4) (2020) 936. [6] H.C. Erythropel, J.B. Zimmerman, T.M. de Winter, L. Petitjean, F. Melnikov, C.H. Lam, A.W. Lounsbury, K.E. Mellor, N.Z. Jankovic, Q. Tu, L.N. Pincus, M.M. Falinski, W. Shi, P. Coish, D.L. Plata, P.T. Anastas, The Green ChemisTREE: 20 years after taking root with the 12 principles, Green Chem. 20(9) (2018) 1929-1961. [7] L.A. Blanchard, D. Hancu, E.J. Beckman, J.F. Brennecke, Green processing using ionic liquids and CO2, Nature 399(1999) 28-29. [8] L.A. Blanchard, Z. Gu, J.F. Brennecke, High-pressure phase behavior of ionic liquid/CO2 systems, J. Phys. Chem. B 105(2001) 2437-2444. [9] J.L. Anthony, E.J. Maginn, J.F. Brennecke, Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate, J. Phys. Chem. B 106(2002) 7315-7320. [10] M.B.Y. Shiflett, Solubilities and diffusivities of carbon dioxide in ionic liquids: [BMIM][PF6] and [BMIM][BF4], Ind. Eng. Chem. Res 44(2005) 4453-4464. [11] M.B. Shiflett, A. Yokozeki, Solubility of CO2 in room temperature ionic liquid [hmim][Tf2N], J. Phys. Chem. B 111(8) (2007) 2070-2074. [12] R.D.M. Eleanor, D. Bates, Ioanna Ntai, James H. Davis Jr., CO2 capture by a taskspecific ionic liquid, J. Am. Chem. Soc. 124(2002) 926-927. [13] Y.Y. Jiang, G.N. Wang, Z. Zhou, Y.T. Wu, J. Geng, Z.B. Zhang, Tetraalkylammonium amino acids as functionalized ionic liquids of low viscosity, Chem. Commun. (Camb) 4(2008) 505-507. [14] J. Zhang, S. Zhang, K. Dong, Y. Zhang, Y. Shen, X. Lv, Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids, Chemistry -Eur. J. 12(15) (2006) 4021-4026. [15] B.E. Gurkan, J.C. de la Fuente, E.M. Mindrup, L.E. Ficke, B.F. Goodrich, E.A. Price, W.F. Schneider, J.F. Brennecke, Equimolar CO2 absorption by anionfunctionalized ionic liquids, J. Am. Chem. Soc. 132(7) (2010) 2116-2117. [16] C. Wang, X. Luo, H. Luo, D.-E. Jiang, H. Li, S. Dai, Tuning the basicity of ionic liquids for equimolar CO2 capture, Angew. Chem. Int. Ed. 50(21) (2011) 4918-4922. [17] S. Zhang, Y. Wang, H. He, F. Huo, Y. Lu, X. Zhang, K. Dong, A new era of precise liquid regulation: quasi-liquid, Green Energy Environ. 2(4) (2017) 329-330. [18] K. Dong, F. Huo, S. Zhang, Thermodynamics at Microscales: 3D→2D, 1D and 0D, Green Energy Environ. 5(3) (2020) 251-258. [19] Y. Dong, F. Huo, A. Laaksonen, Detecting confined fluid behavior by SFA: past, present, and future, Green Energy & Environment, https://doi.org/10.1016/j.gee.2020.08.002. [20] Y. Cho, J.Y. Lee, A.D. Bokare, S.B. Kwon, D.S. Park, W.S. Jung, J.S. Choi, Y.M. Yang, J.Y. Lee, W. Choi, LiOH-embedded zeolite for carbon dioxide capture under ambient conditions, J. Ind. Eng. Chem. 22(2015) 350-356. [21] J. Lin, Q. Li, S.X. Lu, X. Chen, K.M. Liew, Cu-Mn-Ce ternary oxide catalyst coupled with KOH sorbent for air pollution control in confined space, J. Hazard. Mater. 389(2020) 121946. [22] S. Medina-Carrasco, J. Manuel Valverde, In situ XRD analysis of dolomite calcination under CO2 in a humid environment, CrystEngComm 22(39) (2020) 6502-6516. [23] M. Bui, C.S. Adjiman, A. Bardow, E.J. Anthony, A. Boston, S. Brown, P.S. Fennell, S. Fuss, A. Galindo, L.A. Hackett, J.P. Hallett, H.J. Herzog, G. Jackson, J. Kemper, S. Krevor, G.C. Maitland, M. Matuszewski, I.S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D.M. Reiner, E.S. Rubin, S.A. Scott, N. Shah, B. Smit, J.P.M. Trusler, P. Webley, J. Wilcox, N. Mac Dowell, Carbon capture and storage (CCS): The way forward, Energy Environ. Sci. 11(5) (2018) 1062-1176. [24] J. Wilcox, P. Rochana, A. Kirchofer, G. Glatz, J. He, Revisiting film theory to consider approaches for enhanced solvent-process design for carbon capture, Energy Environ. Sci. 7(5) (2014) 1769-1785. [25] E.S. Sanz-Perez, C.R. Murdock, S.A. Didas, C.W. Jones, Direct capture of CO2 from ambient air, Chem. Rev. 116(19) (2016) 11840-11876. [26] S.A. Didas, S. Choi, W. Chaikittisilp, C.W. Jones, Amine-oxide hybrid materials for CO2 capture from ambient air, Acc. Chem. Res. 48(10) (2015) 2680-2687. [27] A. Goeppert, H. Zhang, R. Sen, H. Dang, G.K.S. Prakash, Oxidation-resistant, cost-effective epoxide-modified polyamine adsorbents for CO2 capture from various sources including air, ChemSusChem 12(8) (2019) 1712-1723. [28] S. Kar, A. Goeppert, G.K.S. Prakash, Integrated CO2 capture and conversion to formate and methanol: Connecting two threads, Acc. Chem. Res. 52(10) (2019) 2892-2903. [29] R. Sen, A. Goeppert, S. Kar, G.K.S. Prakash, Hydroxide based integrated CO2 capture from air and conversion to methanol, J. Am. Chem. Soc. 142(10) (2020) 4544-4549. [30] C.A. Seipp, N.J. Williams, M.K. Kidder, R. Custelcean, CO2 capture from ambient air by crystallization with a guanidine sorbent, Angew. Chem.-Int. Ed. 56(4) (2017) 1042-1045. [31] A. Alshehri, C. Dunn, C. Freeman, S. Hugron, T.G. Jones, L. Rochefort, A potential approach for enhancing carbon sequestration during peatland restoration using low-cost, phenolic-rich biomass supplements, Front. Environ. Sci. 8(2020). [32] M. Darabi, H. Pahlavanzadeh, Mathematical modeling of CO2 membrane absorption system using ionic liquid solutions, Chem. Eng. Process.-Process Intensif. 147(2020). [33] N.A. Ramli, N.A. Hashim, M.K. Aroua, Supported ionic liquid membranes (SILMs) as a contactor for selective absorption of CO2/O2 by aqueous monoethanolamine (MEA), Sep. Purif. Technol. 230(2020) 115849. [34] J.E. Bara, T.K. Carlisle, C.J. Gabriel, D. Camper, A. Finotello, D.L. Gin, R.D. Noble, Guide to CO2 separations in imidazolium-based room-temperature ionic liquids, Ind. Eng. Chem. Res. 48(6) (2009) 2739-2751. [35] D. Hospital-Benito, J. Lemus, C. Moya, R. Santiago, J. Palomar, Process analysis overview of ionic liquids on CO2 chemical capture, Chem. Eng. J. 390(2020) 124509. [36] F. Maier, Capture of carbon dioxide at the gas-liquid interface elucidated by surface science approaches, Angew. Chem.-Int. Ed. 50(43) (2011) 10133-10134. [37] F.K. Chong, F.T. Eljack, M. Atilhan, D.C.Y. Foo, N.G. Chemmangattuvalappil, Ionic liquid design for enhanced carbon dioxide capture -A computer aided molecular design approach, Clean. Technol. Envir. 17(5) (2015) 1301-1312. [38] A.S. Aquino, F.L. Bernard, M.O. Vieira, J.V. Borges, M.F. Rojas, F. Dalla Vecchia, R.A. Ligabue, M. Seferin, S. Menezes, S. Einloft, A new approach to CO2 capture and conversion using imidazolium based-ionic liquids as sorbent and catalyst, J. Braz. Chem. Soc. 25(12) (2014) 2251-2257. [39] Y. Yu, J. Mai, L. Wang, X. Li, Z. Jiang, F. Wang, Ship-in-a-bottle synthesis of amine-functionalized ionic liquids in NaY zeolite for CO2 capture, Sci. Rep. 4(2014) 5997. [40] J.P. Hallett, T. Welton, Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2, Chem. Rev. 111(5) (2011) 3508-3576. [41] G. Cui, J. Wang, S. Zhang, Active chemisorption sites in functionalized ionic liquids for carbon capture, Chem. Soc. Rev. 45(15) (2016) 4307-4339. [42] D.M. D’Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: prospects for new materials, Angew. Chem.-Int. Ed. 49(35) (2010) 6058-6082. [43] D. Yang, L. Pang, J. Zhao, Q. Yu, C. Wang, Research on adsorption kinetic model of solid amine in manned spacecraft, Space Med. Med. Eng. 32(4) (2019) 326-332. [44] A. Rong, L. Pang, M. Liu, D. Yang, Multi-objective optimization for solid amine CO2 removal assembly in manned spacecraft, Entropy 19(7) (2017) 348. [45] K. Li, W. Han, J. Li, Adsorption and desorption cycle characteristics of solid amine SO2, China Environ. Sci. 38(10) (2018) 3704-3712. [46] Y. Zhao, X. Li, Performance of solid adsorbents impregnated with amines for carbon dioxide capture, Electric Power 47(1) (2014) 146-150. [47] Q. Yu, W. Si, B. Yang, J. Zhu, L. Lei, An assessment of life-cycles on solid amine for adsorbing low-concentration CO2 in confined spaces, CIESC J. 66(9) (2015) 3692-3697. [48] X. Wan, Y. Pan, H. Xiao, X. Lu, Adsorption of CO2 in flue gas on TEPA-modified novel porous magnesium carbonate, Nat. Gas Chem. Indust. 44(6) (2019) 58-63. [49] F.L. Liu, S.X. Chen, W.H. Fu, Synthesis and CO2 adsorption behavior of aminefunctionalized porous polyacrylonitrile resin, Acta Polym. Sin. 7(2018) 886-892. [50] Y. Zhang, J. Song, X. Tan, Preparation and CO2 adsorption performance of PSF-TEPA membrane-based solid amine, Chem. Eng. (China) 47(6) (2019) 27-31,78. [51] M. Liu, D. Yang, L. Pang, Q. Yu, Y. Huang, Experimental and computational investigation of adsorption performance of TC-5A and PSA-5A for manned spacecraft, Chin. J. Aeronaut. 28(6) (2015) 1583-1592. [52] G. Li, L. Pang, M. Liu, D. Yang, Q. Yu, A. Rong, Multiobjective optimal method for carbon dioxide removal assembly in manned spacecraft, J. Aerosp. Eng. 29(6) (2016) 04016052. [53] D. Yang, L. Pang, M. Liu, Q. Yu, Y. Huang, Study of Adsorption dynamics for 5A molecular sieve material in manned spacecraft, in: L. Chang, C. Guiran, L. Zhen (Eds.), Proceedings of the Atiantis Press, Amsterdam, 2014 International Conference on Mechatronics, Electronic, Industrial and Control Engineering, Atlantis Press, Amsterdam, 2014, p. 985. [54] S.M. Rafigh, A. Heydarinasab, Mesoporous chitosan-SiO2 nanoparticles: synthesis, characterization, and CO2 adsorption capacity, ACS Sustain. Chem. Eng. 5(11) (2017) 10379-10386. [55] P.J. Gusnawan, S. Zha, L. Zou, G. Zhang, J. Yu, Soybean and moringa based green biosolvents for low-concentration CO2 capture via a hollow fiber membrane contactor, Chem. Eng. J. 335(2018) 631-637. [56] J.C.W.P.T. Anastas, Green Chemistry Theory and Practice, Oxford Sciences Publications, New York (1998). [57] J.C. Plaquevent, J. Levillain, F. Guillen, C. Malhiac, A.C. Gaumont, Ionic liquids: New targets and media for alpha-amino acid and peptide chemistry, Chem. Rev. 108(12) (2008) 5035-5060. [58] A.M. Socha, R. Parthasarathi, J. Shi, S. Pattathil, D. Whyte, M. Bergeron, A. George, K. Tran, V. Stavila, S. Venkatachalam, M.G. Hahn, B.A. Simmons, S. Singh, Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose, Proc. Natl. Acad. Sci. USA 111(35) (2014) E3587-E3595. [59] H. Vanda, Y. Dai, E.G. Wilson, R. Verpoorte, Y.H. Choi, Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents, C. R. Chim. 21(6) (2018) 628-638. [60] K. Fukumoto, H. Ohno, Design and synthesis of hydrophobic and chiral anions from amino acids as precursor for functional ionic liquids, Chem. Commun. 29(2006) 3081-3083. [61] Z. Kelemen, B. Péter-Szabó, E. Székely, O. Hollóczki, D.S. Firaha, B. Kirchner, J. Nagy, L. Nyulászi, An abnormal N-heterocyclic carbene-carbon dioxide adduct from imidazolium acetate ionic liquids: the importance of basicity 20(40) (2014) 13002-13008. [62] S. Kasahara, E. Kamio, A.R. Shaikh, T. Matsuki, H. Matsuyama, Effect of the amino-group densities of functionalized ionic liquids on the facilitated transport properties for CO2 separation, J. Membr. Sci. 503(2016) 148-157. [63] A.R. Shaikh, E. Kamio, H. Takaba, H. Matsuyama, Effects of water concentration on the free volume of amino acid ionic liquids investigated by molecular dynamics simulations, J. Phys. Chem. B 119(1) (2015) 263-273. [64] A.R. Shaikh, H. Karkhanechi, E. Kamio, T. Yoshioka, H. Matsuyama, Quantum mechanical and molecular dynamics simulations of dual-amino-acid ionic liquids for CO2 capture, J. Phys. Chem. C 120(49) (2016) 27734-27745. [65] D.S. Firaha, B. Kirchner, Tuning the carbon dioxide absorption in amino acid ionic liquids, ChemSusChem 9(13) (2016) 1591-1599. [66] X. Zhang, Z. Liu, X. Liu, Understanding the interactions between tris (pentafluoroethyl)-trifluorophosphate-based ionic liquid and small molecules from molecular dynamics simulation, Sci. China-Chem. 55(8) (2012) 1557-1565. [67] Y. Huang, Z. Wan, Z. Yang, Y. Ji, L. Li, D. Yang, M. Zhu, X. Chen, Concentrationdependent hydrogen bond behavior of ethylammonium nitrate protic ionic liquid-water mixtures explored by molecular dynamics simulations, J. Chem. Eng. Data 62(8) (2017) 2340-2349. [68] S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, S. Zhang, Ionic-liquid-based CO2 capture systems: structure, interaction and process, Chem. Rev. 117(14) (2017) 9625-9673. [69] A. Klamt, F. Eckert, COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids, Fluid Phase Equilib. 172(1) (2000) 43-72. [70] A. Klamt, Chapter 12-Summary, limitations, and perspectives, in: A. Klamt (Ed.), COSMO-RS, Elsevier, Amsterdam, 2005, pp. 205-207. [71] M. Diedenhofen, A. Klamt, COSMO-RS as a tool for property prediction of IL mixtures—a review, Fluid Phase Equilib. 294(1) (2010) 31-38. [72] X.C. Zhang, Z.P. Liu, W.C. Wang, Screening of ionic liquids to capture CO2 by COSMO-RS and experiments, AIChE J. 54(10) (2008) 2717-2728. [73] X. Liu, Y. Huang, Y. Zhao, R. Gani, X. Zhang, S. Zhang, Ionic liquid design and process simulation for decarbonization of shale gas, Ind. Eng. Chem. Res. 55(20) (2016) 5931-5944. [74] J.W. Yang, Z.K. Hou, G.L. Wen, P.Z. Cui, Y.L. Wang, J. Gao, A brief review of the prediction of liquid-liquid equilibrium of ternary systems containing ionic liquids by the COSMO-SAC model, J. Solut. Chem. 48(11-12) (2019) 1547-1563. [75] Q.L. Liu, L. Zhang, L.L. Liu, J. Du, Q.W. Meng, R. Gani, Computer-aided reaction solvent design based on transition state theory and COSMO-SAC, Chem. Eng. Sci. 202(2019) 300-317. [76] R. Santiago, J. Lemus, A.X. Outomuro, J. Bedia, J. Palomar, Assessment of ionic liquids as H2S physical absorbents by thermodynamic and kinetic analysis based on process simulation, Sep. Purif. Technol. 233(2020) 116050. [77] J. Palomar, M. Larriba, J. Lemus, D. Moreno, R. Santiago, C. Moya, J. de Riva, G. Pedrosa, Demonstrating the key role of kinetics over thermodynamics in the selection of ionic liquids for CO2 physical absorption, Sep. Purif. Technol. 213(2019) 578-586. [78] O. Alioui, Y. Benguerba, I.M. Alnashef, Investigation of the CO2 solubility in deep eutectic solvents using COSMO-RS and molecular dynamics methods, J. Mol. Liq. 307(2020) 113005. [79] B. Seyedhosseini, M. Izadyar, M.R. Housaindokht, DFT investigation on the selective complexation of ionic liquids based on alpha-amino acid anion and N7, N9-dimethyladeninium cation with CO2, RSC Adv. 6(89) (2016) 85924-85932. [80] P. Prakash, A. Venkatnathan, Site-specific interactions in CO2 capture by lysinate anion and role of water using density functional theory, J. Phys. Chem. C 122(24) (2018) 12647-12656. [81] C.C. Li, D.M. Lu, C. Wu, Multi-molar CO2 capture beyond the direct Lewis acidbase interaction mechanism, PCCP 22(20) (2020) 11354-11361. [82] H. Fu, X.Y. Wang, H.N. Sang, R.Y. Fan, Y.F. Han, J.L. Zhang, Z.Z. Liu, The study of bicyclic amidine-based ionic liquids as promising carbon dioxide capture agents, J. Mol. Liq. 304(2020) 112805. [83] N. Noorani, A. Mehrdad, CO2 solubility in some amino acid-based ionic liquids: Measurement, correlation and DFT studies, Fluid Phase Equilib. 517(2020) 112591. [84] X.Y. Luo, Y. Guo, F. Ding, H.Q. Zhao, G.K. Cui, H.R. Li, C.M. Wang, Significant improvements in CO2 capture by pyridine-containing anion-functionalized ionic liquids through multiple-site cooperative interactions, Angew. Chem.-Int. Ed. 53(27) (2014) 7053-7057. [85] F.F. Chen, K. Huang, Y. Zhou, Z.Q. Tian, X. Zhu, D.J. Tao, D.E. Jiang, S. Dai, Multimolar absorption of CO2 by the activation of carboxylate groups in amino acid ionic liquids, Angew. Chem. Int. Ed. 55(25) (2016) 7166-7170. [86] Y. Huang, G. Cui, Y. Zhao, H. Wang, Z. Li, S. Dai, J. Wang, Preorganization and cooperation for highly efficient and reversible capture of low-concentration CO2 by ionic liquids, Angew. Chem. Int. Ed. 56(43) (2017) 13293-13297. [87] Y. Wang, C. Wang, Y. Zhang, F. Huo, H. He, S. Zhang, Molecular insights into the regulatable interfacial property and flow behavior of confined ionic liquids in graphene nanochannels, Small 15(29) (2019) e1804508. [88] M. Fakhraee, Amino acid ionic liquids based on imidazolium-hydroxyl functionalized cation: New insight from molecular dynamics simulations, J. Mol. Liq. 279(2019) 51-62. [89] E. Ricci, N. Vergadou, G.G. Vogiatzis, M.G. De Angelis, D.N. Theodorou, Molecular simulations and mechanistic analysis of the effect of CO2 sorption on thermodynamics, structure, and local dynamics of molten atactic polystyrene, Macromolecules 53(10) (2020) 3669-3689. [90] H. Wang, Y. Yin, J.Q. Bai, S.F. Wang, Multi-factor study of the effects of a trace amount of water vapor on low concentration CO2 capture by 5A zeolite particles, RSC Adv. 10(11) (2020) 6503-6511. [91] S. Budhathoki, J.K. Shah, E.J. Maginn, Molecular simulation study of the solubility, diffusivity and permselectivity of pure and binary mixtures of CO2 and CH4 in the ionic liquid 1-n-Butyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide, Ind. Eng. Chem. Res. 54(35) (2015) 8821-8828. [92] B. Li, C. Wang, Y. Zhang, Y. Wang, High CO2 absorption capacity of metalbased ionic liquids: A molecular dynamics study, Green Energy & Environment, https://doi.org/10.1016/j.goe.2020.04.009. [93] P. Prakash, A. Venkatnathan, Molecular mechanism of CO2 absorption in phosphonium amino acid ionic liquid, RSC Adv. 6(60) (2016) 55438-55443. [94] C. Herrera, G. Garcia, R. Alcalde, M. Atilhan, S. Aparicio, Interfacial properties of 1-ethyl-3-methylimidazolium glycinate ionic liquid regarding CO2, SO2 and water from molecular dynamics, J. Mol. Liq. 220(2016) 910-917. [95] X.M. Deng, W.Y. Yang, S.H. Li, H. Liang, Z.N. Shi, Z.W. Qiao, Large-scale screening and machine learning to predict the computation-ready, experimental metal-organic frameworks for CO2 capture from air, Appl. Sci.-Basel 10(2) (2020) 569. [96] Y. Huang, H. Dong, X. Zhang, C. Li, S. Zhang, New fragment contributioncorresponding states method for physicochemical properties prediction of ionic liquids, AIChE J. 59(4) (2013) 1348-1359. [97] D. Bao, X. Zhang, H.F. Dong, Z.L. Ouyang, X.P. Zhang, S.J. Zhang, Numerical simulations of bubble behavior and mass transfer in CO2 capture system with ionic liquids, Chem. Eng. Sci. 135(2015) 76-88. [98] M.F. Ali, J.Q. Gan, X.C. Chen, G.R. Yu, Y. Zhang, M. Ellahi, A.A. Abdeltawab, Hydrodynamic modeling of ionic liquids and conventional amine solvents in bubble column, Chem. Eng. Res. Des. 129(2018) 356-375. [99] X. Li, M. Hou, Z. Zhang, B. Han, G. Yang, X. Wang, L. Zou, Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters, Green Chem. 10(8) (2008) 879-884. [100] L.C. Tome, I.M. Marrucho, Ionic liquid-based materials: A platform to design engineered CO2 separation membranes, Chem. Soc. Rev. 45(10) (2016) 2785-2824. [101] M.-A. Néouze, J. Le Bideau, P. Gaveau, S. Bellayer, A. Vioux, Ionogels, new materials arising from the confinement of ionic liquids within silica-derived networks, Chem. Mater. 18(17) (2006) 3931-3936. [102] L.J. Lozano, C. Godínez, A.P. de los Ríos, F.J. Hernández-Fernández, S. SánchezSegado, F.J. Alguacil, Recent advances in supported ionic liquid membrane technology, J. Membr. Sci. 376(1) (2011) 1-14. [103] Y. Uehara, D. Karami, N. Mahinpey, Roles of cation and anion of amino acid anion-functionalized ionic liquids immobilized into a porous support for CO2 capture, Energy Fuels 32(4) (2018) 5345-5354. [104] F. Ding, X. He, X.Y. Luo, W.J. Lin, K.H. Chen, H.R. Li, C.M. Wang, Highly efficient CO2 capture by carbonyl-containing ionic liquids through Lewis acid-base and cooperative C-H center dot center dot center dot O hydrogen bonding interaction strengthened by the anion, Chem. Commun. 50(95) (2014) 15041-15044. [105] X.Y. Luo, X.Y. Lv, G.L. Shi, Q. Meng, H.R. Li, C.M. Wang, Designing amino-based ionic liquids for improved carbon capture: One amine binds two CO2, AIChE J. 65(1) (2019) 230-238. [106] D. Xiong, G. Cui, J. Wang, H. Wang, Z. Li, K. Yao, S. Zhang, Reversible hydrophobic-hydrophilic transition of ionic liquids driven by carbon dioxide, Angew. Chem.-Int. Ed. 54(25) (2015) 7265-7269. [107] C. Wang, H. Luo, H. Li, X. Zhu, B. Yu, S. Dai, Tuning the physicochemical properties of diverse phenolic ionic liquids for equimolar CO2 capture by the substituent on the anion, Chemistry-Eur. J. 18(7) (2012) 2153-2160. [108] B. Gurkan, B.F. Goodrich, E.M. Mindrup, L.E. Ficke, M. Massel, S. Seo, T.P. Senftle, H. Wu, M.F. Glaser, J.K. Shah, E.J. Maginn, J.F. Brennecke, W.F. Schneider, Molecular design of high capacity, low viscosity, chemically tunable ionic liquids for CO2 capture, J. Phys. Chem. Lett. 1(24) (2010) 3494-3499. [109] Y. Zhang, S. Zhang, X. Lu, Q. Zhou, W. Fan, X. Zhang, Dual aminofunctionalised phosphonium ionic liquids for CO2 capture, Chemistry-Eur. J. 15(12) (2009) 3003-3011. [110] E. Davarpanah, S. Hernandez, G. Latini, C.F. Pirri, S. Bocchini, Enhanced CO2 absorption in organic solutions of biobased ionic liquids, Adv. Sustain. Syst. 4(1) (2020) 1900067. [111] K.E. Gutowski, E.J. Maginn, Amine-functionalized task-specific ionic liquids: A mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation, J. Am. Chem. Soc. 130(44) (2008) 14690-14704. [112] Y. Ji, Y. Hou, S. Ren, C. Yao, W. Wu, Tetraethylammonium amino acid ionic liquids and CO2 for separation of phenols from oil mixtures, Energy Fuels 32(10) (2018) 11046-11054. [113] M. Petkovic, J.L. Ferguson, H.Q.N. Gunaratne, R. Ferreira, M.C. Leitao, K.R. Seddon, L.P.N. Rebelo, C.S. Pereira, Novel biocompatible cholinium-based ionic liquids-toxicity and biodegradability, Green Chem. 12(4) (2010) 643-649. [114] X.D. Hou, Q.P. Liu, T.J. Smith, N. Li, M.H. Zong, Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids, PLoS ONE 8(3) (2013) e59145. [115] J.I. Santos, A.M.M. Goncalves, J.L. Pereira, B.F.H.T. Figueiredo, F.A. e Silva, J.A.P. Coutinho, S.P.M. Ventura, F. Goncalves, Environmental safety of choliniumbased ionic liquids: Assessing structure-ecotoxicity relationships, Green Chem 17(9) (2015) 4657-4668. [116] S. Bhattacharyya, F.U. Shah, Ether functionalized choline tethered amino acid ionic liquids for enhanced CO2 capture, ACS Sustain. Chem. Eng. 4(10) (2016) 5441-5449. [117] J.C.d.l.F. Brett F. Goodrich, Burcu E. Gurkan, David J. Zadigian, Erica A. Price, Yong Huang, Joan F. Brennecke, Experimental measurements of aminefunctionalized anion-tethered ionic liquids with carbon dioxide, Ind. Eng. Chem. Res. 50(2011) 111-118. [118] Y. Chen, K. Guo, L. Huangpu, Experiments and modeling of absorption of CO2 by amino-cation and amino-anion dual functionalized ionic liquid with the addition of aqueous medium, J. Chem. Eng. Data 62(11) (2017) 3732-3743. [119] A.R. Shaikh, M. Ashraf, T. AlMayef, M. Chawla, A. Poater, L. Cavallo, Amino acid ionic liquids as potential candidates for CO2 capture: Combined density functional theory and molecular dynamics simulations, Chem. Phys. Lett. 745(2020) 137239. [120] A.S.L. Gouveia, L.C. Tome, I.M. Marrucho, Density, viscosity, and refractive index of ionic liquid mixtures containing cyano and amino acid-based anions, J. Chem. Eng. Data 61(1) (2016) 83-93. [121] F.F. Chen, K. Huang, J.P. Fan, D.J. Tao, Chemical solvent in chemical solvent: a class of hybrid materials for effective capture of CO2, AIChE J. 64(2) (2018) 632-639. [122] S. Saravanamurugan, A.J. Kunov-Kruse, R. Fehrmann, A. Riisager, Aminefunctionalized amino acid-based ionic liquids as efficient and high-capacity absorbents for CO2, ChemSusChem 7(3) (2014) 897-902. [123] H. Zhao, Methods for stabilizing and activating enzymes in ionic liquids -A review, J. Chem. Technol. Biotechnol. 85(7) (2010) 891-907. [124] P. Scovazzo, Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research, J. Membr. Sci. 343(1-2) (2009) 199-211. [125] Q.P. Liu, X.D. Hou, N. Li, M.H. Zong, Ionic liquids from renewable biomaterials: synthesis, characterization and application in the pretreatment of biomass, Green Chem. 14(2) (2012) 304-307. [126] R. Condemarin, P. Scovazzo, Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium RTIL data, Chem. Eng. J. 147(1) (2009) 51-57. [127] M. Usman, H. Huang, J. Li, M. Hillestad, L. Deng, Optimization and characterization of an amino acid ionic liquid and polyethylene glycol blend solvent for precombustion CO2 capture: experiments and model fitting, Ind. Eng. Chem. Res. 55(46) (2016) 12080-12090. [128] J. Li, Z. Dai, M. Usman, Z. Qi, L. Deng, CO2/H2 separation by amino-acid ionic liquids with polyethylene glycol as co-solvent, Int. J. Greenhouse Gas Control 45(2016) 207-215. [129] Bhawna, A. Pandey, D. Dhingra, S. Pandey, Can common liquid polymers and surfactants capture CO2?, J Mol. Liq. 277(2019) 594-605. [130] J. Ren, L. Wu, B.G. Li, Preparation and CO2 sorption/desorption of N-(3-aminopropyl) aminoethyl tributylphosphonium amino acid salt ionic liquids supported into porous silica particles, Ind. Eng. Chem. Res. 51(23) (2012) 7901-7909. [131] X. Wang, N.G. Akhmedov, Y. Duan, D. Luebke, B. Li, Immobilization of amino acid ionic liquids into nanoporous microspheres as robust sorbents for CO2 capture, J. Mater. Chem. A 1(9) (2013) 2978-2982. [132] W. Xie, X. Ji, X. Feng, X. Lu, Mass-transfer rate enhancement for CO2 separation by ionic liquids: theoretical study on the mechanism, AIChE J. 61(12) (2015) 4437-4444. [133] W. Xie, X. Ji, X. Feng, X. Lu, Mass transfer rate enhancement for CO2 separation by ionic liquids: effect of film thickness, Ind. Eng. Chem. Res. 55(1) (2016) 366-372. [134] F. Karadas, M. Atilhan, S. Aparicio, Review on the use of Ionic Liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening, Energy Fuels 24(11) (2010) 5817-5828. [135] X. Wang, N.G. Akhmedov, Y. Duan, D. Luebke, D. Hopkinson, B. Li, Amino acidfunctionalized ionic liquid solid sorbents for post-combustion carbon capture, ACS Appl. Mater. Interfaces 5(17) (2013) 8670-8677. [136] C. Xue, L. Feng, H. Zhu, R. Huang, E. Wang, X. Du, G. Liu, X. Hao, K. Li, Pyridinecontaining ionic liquids lowly loaded in large mesoporous silica and their rapid CO2 gas adsorption at low partial pressure, J. CO2 Utilization 34(2019) 282-292. [137] M. Khraisheh, K.M. Zadeh, A.I. Alkhouzaam, D. Turki, M.K. Hassan, F. Al Momani, S.M.J. Zaidi, Characterization of polysulfone/diisopropylamine 1-alkyl-3-methylimidazolium ionic liquid membranes: high pressure gas separation applications, Greenhouse Gases-Sci. Technol. 10(4) (2020) 795-808. [138] Z. Dai, R.D. Noble, D.L. Gin, X. Zhang, L. Deng, Combination of ionic liquids with membrane technology: a new approach for CO2 separation, J. Membr. Sci. 497(2016) 1-20. [139] P. Luis, L.A. Neves, C.A.M. Afonso, I.M. Coelhoso, J.G. Crespo, A. Garea, A. Irabien, Facilitated transport of CO2 and SO2 through Supported Ionic Liquid Membranes (SILMs), Desalination 245(1-3) (2009) 485-493. [140] M. Maurya, J.K. Singh, Treatment of flue gas using graphene sponge: a simulation study, J. Phys. Chem. C 122(26) (2018) 14654-14664. [141] H. Lin, K. Gong, W. Ying, D. Chen, J. Zhang, Y. Yan, X. Peng, CO2-philic separation membrane: deep eutectic solvent filled graphene oxide nanoslits, Small 15(49) (2019) e1904145. [142] Y.-Y. Lee, K. Edgehouse, A. Klemm, H. Mao, E. Pentzer, B. Gurkan, Capsules of reactive ionic liquids for selective capture of carbon dioxide at low concentrations, ACS Appl. Mater. Interfaces 12(16) (2020) 19184-19193. [143] M. Bahadori, S. Tangestaninejad, M. Bertmer, M. Moghadam, V. Mirkhani, I. Mohammadpoor-Baltork, R. Kardanpour, F. Zadehahmadi, Task-specific ionic liquid functionalized-MIL-101(Cr) as a heterogeneous and efficient catalyst for the cycloaddition of CO2 with epoxides under solvent free conditions, ACS Sustain. Chem. Eng. 7(4) (2019) 3962-3973. [144] M. Sarker, I. Ahmed, S.H. Jhung, Adsorptive removal of herbicides from water over nitrogen-doped carbon obtained from ionic liquid@ZIF-8, Chem. Eng. J. 323(2017) 203-211. [145] H.M.A. Hassan, M.A. Betiha, S.K. Mohamed, E.A. El-Sharkawy, E.A. Ahmed, Stable and recyclable MIL-101(Cr)-Ionic liquid based hybrid nanomaterials as heterogeneous catalyst, J. Mol. Liq. 236(2017) 385-394. [146] L.G. Ding, B.J. Yao, W.L. Jiang, J.T. Li, Q.J. Fu, Y.A. Li, Z.H. Liu, J.P. Ma, Y.B. Dong, Bifunctional imidazolium-based ionic liquid decorated UiO-67 Type MOF for selective CO2 adsorption and catalytic property for CO2 cycloaddition with epoxides, Inorg. Chem. 56(4) (2017) 2337-2344. [147] N.A. Khan, B.N. Bhadra, S.H. Jhung, Heteropoly acid-loaded ionic liquid@metalorganic frameworks: effective and reusable adsorbents for the desulfurization of a liquid model fuel, Chem. Eng. J. 334(2018) 2215-2221. [148] B.N. Bhadra, A. Vinu, C. Serre, S.H. Jhung, MOF-derived carbonaceous materials enriched with nitrogen: Preparation and applications in adsorption and catalysis, Mater. Today 25(2019) 88-111. [149] N.A. Khan, Z. Hasan, S.H. Jhung, Ionic liquids supported on metal-organic frameworks: remarkable adsorbents for adsorptive desulfurization, Chemistry A European J. 20(2) (2014) 376-380. [150] K. Zhang, Y. Chen, A. Nalaparaju, J. Jiang, Functionalized metal-organic framework MIL-101 for CO2 capture: Multi-scale modeling from ab initio calculation and molecular simulation to breakthrough prediction, CrystEngComm 15(47) (2013) 10358-10366. [151] H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341(6149) (2013) 1230444. [152] J.M. Huck, L.C. Lin, A.H. Berger, M.N. Shahrak, R.L. Martin, A.S. Bhown, M. Haranczyk, K. Reuter, B. Smit, Evaluating different classes of porous materials for carbon capture, Energy Environ. Sci. 7(12) (2014) 4132-4146. [153] J.A. Mason, K. Sumida, Z.R. Herm, R. Krishna, J.R. Long, Evaluating metalorganic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption, Energy Environ. Sci. 4(8) (2011) 3030-3040. [154] P.G. Boyd, A. Chidambaram, E. Garcia-Diez, C.P. Ireland, T.D. Daff, R. Bounds, A. Gladysiak, P. Schouwink, S.M. Moosavi, M.M. Maroto-Valer, J.A. Reimer, J.A. R. Navarro, T.K. Woo, S. Garcia, K.C. Stylianou, B. Smit, Data-driven design of metal-organic frameworks for wet flue gas CO2 capture, Nature 576(7786) (2019) 253-256. [155] A. Cadiau, Y. Belmabkhout, K. Adil, P.M. Bhatt, R.S. Pillai, A. Shkurenko, C. Martineau-Corcos, G. Maurin, M. Eddaoudi, Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration, Science 356(6339) (2017) 731-735. [156] Y. Guo, C. Zhao, C. Li, Y. Wu, CO2 sorption and reaction kinetic performance of K2CO3/AC in low temperature and CO2 concentration, Chem. Eng. J. 260(2015) 596-604. [157] C. Zhao, Y. Guo, C. Li, S. Lu, Carbonation behavior of K2CO3/AC in low reaction temperature and CO2 concentration, Chem. Eng. J. 254(2014) 524-530. [158] C. Zhao, Y. Guo, C. Li, S. Lu, Removal of low concentration CO2 at ambient temperature using several potassium-based sorbents, Appl. Energy 124(2014) 241-247. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||