[1] L.S. Lin, T. Huang, J.B. Song, X.Y. Ou, Z.T. Wang, H.Z. Deng, R. Tian, Y.J. Liu, J.F. Wang, Y. Liu, G.C. Yu, Z.J. Zhou, S. Wang, G. Niu, H.H. Yang, X.Y. Chen, Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy, J. Am. Chem. Soc. 141 (2019) 9937-9945. [2] R. Serra-Maia, F.M. Michel, Y.J. Kang, E.A. Stach, Decomposition of hydrogen peroxide catalyzed by AuPd nanocatalysts during methane oxidation to methanol, ACS Catal. 10 (2020) 5115-5123. [3] Y. Cheng, Y.H. Ji, Mitochondria-targeting nanomedicine self-assembled from GSH-responsive paclitaxel-ss-berberine conjugate for synergetic cancer treatment with enhanced cytotoxicity, J. Control. Release 318 (2020) 38-49. [4] N.H. Wu, X.Y. Ji, R. An, C. Liu, X.H. Lu, Generalized Gibbs free energy of confined nanoparticles, AIChE J. 63 (2017) 4595-4603. [5] F. Zhang, Z.L. Xu, K. Wang, R.Z. Chen, Z.X. Zhong, W.H. Xing, Controllable preparation of ZnO porous flower through a membrane dispersion reactor and their photocatalytic properties, Chin. J. Chem. Eng. 26 (2018) 2192-2198. [6] D. Tichit, G. Layrac, C. Gérardin, Synthesis of layered double hydroxides through continuous flow processes: A review, Chem. Eng. J. 369 (2019) 302-332. [7] X.H. Liu, Q.W. Zhang, W. Knoll, B. Liedberg, Y. Wang, Rational design of functional peptide-gold hybrid nanomaterials for molecular interactions, Adv. Mater. 32 (37) (2020), 2000866. [8] Z. Zhang, Y.H. Ji, Mesoporous manganese dioxide coated gold nanorods as a multiresponsive nanoplatform for drug delivery, Ind. Eng. Chem. Res. 8 (2019) 2991-2999. [9] J.Y. Choi, S.H. Lee, H.B. Na, K. An, T. Hyeon, T.S. Seo, In vitro cytotoxicity screening of water-dispersible metal oxide nanoparticles in human cell lines, Bioprocess. Biosyst. Eng. 33 (2009) 21-31. [10] J.Y. Weng, Y.P. Huang, D.L. Hao, Y.H. Ji, Recent advances of pharmaceutical crystallization theories, Chin. J. Chem. Eng. 28 (2019) 935-948. [11] D.A. Shah, S.B. Murdande, R.H. Dave, A. Review, Pharmaceutical and pharmacokinetic aspect of nanocrystalline suspensions, J. Pharm. Sci. 105 (2016) 10-24. [12] M. Imono, H. Uchiyama, H. Ueda, K. Kadota, Y. Tozuka, In-situ dissolution and permeation studies of nanocrystal formulations with second-derivative UV spectroscopy, Int. J. Pharm. 558 (2019) 242-249. [13] L. Lindfors, S. Forssén, P. Skantze, U. Skantze, A. Zackrisson, U. Olsson, Amorphous drug nanosuspensions. 2. Experimental determination of bulk monomer concentrations, Langmuir 22 (2006) 911-916. [14] B. Medasani, Y.H. Park, I. Vasiliev, Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles, Phys. Rev. B 75 (2007) 235436. [15] L. Vitos, A.V. Ruban, H.L. Skriver, J. Kollár, The surface energy of metals, Sur. Sci. 411 (1998) 186-202. [16] G. Kaptay, The chemical (not mechanical) paradigm of thermodynamics of colloid and interface science, Adv. Colloid Interface Sci. 256 (2018) 163-192. [17] B. Van Eerdenbrugh, J. Vermant, J.A. Martens, L. Froyen, J.V. Humbeeck, G. Van den Mooter, P. Augustijns, Solubility increases associated with crystalline drug nanoparticles: methodologies and significance, Mol. Pharm. 7 (2010) 1858-1870. [18] S.B. Murdande, D.A. Shah, R.H. Dave, Impact of nanosizing on solubility and dissolution rate of poorly soluble pharmaceuticals, J. Pharm. Sci. 104 (2015) 2094-2102. [19] C.Q. Zhang, Z.Q. Hu, B.L. Deng, Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms, Water Res. 88 (2016) 403-427. [20] Y. Wolanov, P.V. Prikhodchenko, A.G. Medvedev, R. Pedahzur, O. Lev, Zinc dioxide nanoparticles: a hydrogen peroxide source at moderate Ph, Environ. Sci. Technol. 15 (2013) 8769-8774. [21] K. Jiang, X.M. Liu, H.Y. He, J.J. Wang, S.J. Zhang, Insight into the formation and permeability of ionic liquid unilamellar vesicles by molecular dynamics simulation, Soft Matter 16 (2020) 2605-2610. [22] J.P. Möschwitzer, Drug nanocrystals in the commercial pharmaceutical development process, Int. J. Pharm. 453 (2013) 142-156. [23] J.Y. Zhang, K. Higashi, W. Limwikrant, K. Moribe, K. Yamamoto, Molecular-level characterization of probucol nanocrystal in water by in situ solid-state NMR spectroscopy, Int. J. Pharm. 423 (2012) 571-576. [24] Y. Hasegawa, K. Higashi, K. Yamatoto, K. Moribe, Direct evaluation of molecular states of piroxicam/poloxamer nanosuspension by suspendedstate NMR and Raman spectroscopies, Mol. Pharm. 12 (2015) 1564-1572. [25] T. Kojima, M. Karashima, K. Yamamoto, Y. Ikeda, Combination of NMR methods to reveal the interfacial structure of a pharmaceutical nanocrystal and nanococrystal in the suspended state, Mol. Pharm. 15 (2018) 3901-3908. [26] Q. Jiang, H.M. Lu, Size dependent interface energy and its applications, Surf. Sci. Rep. 63 (2008) 427-464. [27] I.A. Mudunkotuwa, T. Rupasinghe, C.M. Wu, V.H. Grassian, Dissolution of ZnO nanoparticles at circumneutral pH: A study of size effects in the presence and absence of citric acid, Langmuir 28 (2011) 396-403. [28] K.E. Gubbins, Y. Long, M. Śliwinska-Bartkowiak, Thermodynamics of confined nano-phases, J. Chem. Thermodyn. 74 (2014) 169-183. [29] W.A. Steele, The physical interaction of gases with crystalline solids: I. Gassolid energies and properties of isolated adsorbed atoms, Surf. Sci. 36 (1973) 317-352. [30] R. Paus, A. Prudic, Y.H. Ji, Influence of excipients on solubility and dissolution of pharmaceuticals, Int. J. Pharm. 485 (2015) 277-287. [31] Y.H. Ji, A.K. Lesniak, A. Prudic, R. Paus, G. Sadowski, Drug release kinetics and mechanism from PLGA formulations, AIChE J. 62 (2016) 4055-4065. [32] Y.H. Ji, R. Paus, A. Prudic, C. Lübbert, G. Sadowski, A novel approach for analyzing the dissolution mechanism of solid dispersions, Pharm. Res. 32 (2015) 2559-2578. [33] Y.H. Ji, M. Lemberg, A. Prudic, R. Paus, G. Sadowski, Modeling and analysis of dissolution of paracetamol/Eudragit® formulations, Chem. Eng. Res. Des. 121 (2017) 22-31. [34] J. Gross, G. Sadowski, Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules, Ind. Eng. Chem. Res. 40 (2001) 1244-1260. [35] J. Gross, G. Sadowski, Application of the perturbed-chain SAFT equation of state to associating systems, Ind. Eng. Chem. Res. 41 (2002) 5510-5515. [36] J.P. Wolbach, S.I. Sandler, Using molecular orbital calculations to describe the phase behavior of cross-associating mixtures, Ind. Eng. Chem. Res. 37 (1998) 2917-2928. [37] T.S. Peretyazhko, Q. Zhang, V.L. Colvin, Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes, Environ. Sci. Technol. 48 (2014) 11954-11961. [38] R. Ma, C. Levard, S.M. Marinakos, Y. Cheng, J. Liu, F.M. Michel, G.E. Brown, G.V. Lowry, Size-controlled dissolution of organic-coated silver nanoparticles, Environ. Sci. Technol. 46 (2012) 752-759. [39] W. Zhang, Y. Yao, N. Sullivan, Y.S. Chen, Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics, Environ. Sci. Technol. 45 (2011) 4422-4428. [40] Z.R. Li, Q.S. Fu, Y.Q. Xue, Z.X. Cui, Effect of size on dissolution thermodynamics of nanoparticles: A theoretical and experimental research, Mater. Chem. Phys. 214 (2018) 499-506. [41] A. Shadloo, M. Abolala, K. Peyvandi, Application of ion-based ePC-SAFT in prediction of density of aqueous electrolyte solutions, J. Mol. Liq. 221 (2016) 904-913. [42] C. Neves, C. Held, S. Mohammad, M. Schleinitz, J.A.P. Coutinhoa, M.G. Freire, Effect of salts on the solubility of ionic liquids in water: Experimental and electrolyte perturbed-chain statistical associating fluid theory, Phys. Chem. Chem. Phys. 17 (2015) 32044-32052. [43] A. Prudic, Y.H. Ji, G. Sadowski, Thermodynamic phase behavior of API/polymer solid dispersions, Mol. Pharm. 11 (2014) 2294-2304. [44] A. Rammohan, J.A. Kaduk, Trisodium citrate, Na3(C6H5O7), Acta Crystal. 72 (2016) 793-796. [45] S.V. Dalvi, R.N. Dave, Analysis of nucleation kinetics of poorly water-soluble drugs in presence of ultrasound and hydroxypropyl methyl cellulose during antisolvent precipitation, Int. J. Pharm. 387 (2010) 172-179. [46] K. Lehmkemper, S.O. Kyeremateng, M. Degenhardt, G. Sadowski, Influence of low-molecular-weight excipients on the phase behavior of PVPVA64 amorphous solid dispersions, Pharm. Res. 35 (2018) 25-39. [47] M. Otsuka, T. Ohfusa, Y. Matsuda, Effect of binders on polymorphic transformation kinetics of carbamazepine in aqueous solution, Colloid Surf. B-Biointerfaces 17 (2000) 145-152. [48] R. Paus, Y.H. Ji, L. Vahle, G. Sadowski, Predicting the solubility advantage of amorphous pharmaceuticals: a novel thermodynamic approach, Mol. Pharm. 12 (2015) 2823-2833. [49] J. Brinkmann, F. Rest, C. Luebbert, G. Sadowski, Solubility of pharmaceutical ingredients in natural edible oils, Mol. Pharm. 17 (2020) 2499-2507. [50] K. Lehmkemper, S.O. Kyeremateng, O. Heinzerling, M. Degenhardt, G. Sadowski, Impact of polymer type and relative humidity on the long-term physical stability of amorphous solid dispersions, Mol. Pharm. 14 (2017) 4374-4386. [51] A.D. French, Idealized powder diffraction patterns for cellulose polymorphs, Cellulose 21 (2013) 885-896. |