中国化学工程学报 ›› 2021, Vol. 29 ›› Issue (2): 301-307.DOI: 10.1016/j.cjche.2020.11.009
• Biomedical Engineering • 上一篇 下一篇
Yingnan Si1, Arin L. Melkonian2, Keegan C. Curry1, Yuanxin Xu1, Maranda Tidwell1, Mingming Liu3, Ahmed F. Zaky4, Xiaoguang (Margaret) Liu1
收稿日期:
2020-10-13
修回日期:
2020-11-15
出版日期:
2021-02-28
发布日期:
2021-05-15
通讯作者:
Xiaoguang (Margaret) Liu
基金资助:
Yingnan Si1, Arin L. Melkonian2, Keegan C. Curry1, Yuanxin Xu1, Maranda Tidwell1, Mingming Liu3, Ahmed F. Zaky4, Xiaoguang (Margaret) Liu1
Received:
2020-10-13
Revised:
2020-11-15
Online:
2021-02-28
Published:
2021-05-15
Contact:
Xiaoguang (Margaret) Liu
Supported by:
摘要: Targeted therapy has been widely demonstrated as an effective strategy to treat cancers, the leading cause of death in the world. This minireview summarizes the technical platforms and methodologies utilized to develop and engineer therapeutic monoclonal antibodies and antibody-drug conjugates. First, the USA FDA approved monoclonal antibody (mAb)-based targeted therapies are reviewed. Then the representative innovative chimeric, humanized and fully human anti-cancer antibodies and antibody-drug conjugates are described. Finally, the past and predictive market trend of therapeutic antibodies is discussed.
Yingnan Si, Arin L. Melkonian, Keegan C. Curry, Yuanxin Xu, Maranda Tidwell, Mingming Liu, Ahmed F. Zaky, Xiaoguang (Margaret) Liu. Monoclonal antibody-based cancer therapies[J]. 中国化学工程学报, 2021, 29(2): 301-307.
Yingnan Si, Arin L. Melkonian, Keegan C. Curry, Yuanxin Xu, Maranda Tidwell, Mingming Liu, Ahmed F. Zaky, Xiaoguang (Margaret) Liu. Monoclonal antibody-based cancer therapies[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 301-307.
[1] F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 68 (2018) 394–424. [2] E.V. Stevens, E.M. Posadas, B. Davidson, E.C. Kohn, Proteomics in cancer, Ann. Oncol. Off. J. Eur. Soc. Med. Oncol./ESMO 15 Suppl 4 (2004), iv167–171. [3] D. Rosenblum, D. Peer, Omics-based nanomedicine: the future of personalized oncology, Cancer Lett. 352 (2014) 126–136. [4] D.F. Hayes, OMICS-based personalized oncology: if it is worth doing, it is worth doing well!, BMC Med. 11 (2013) 221–224. [5] W.J. Rettig, L.J. Old, Immunogenetics of human cell surface differentiation, Annu. Rev. Immunol. 7 (1989) 481–511. [6] D.T. Loo, J.P. Mather, Antibody-based identification of cell surface antigens: targets for cancer therapy, Curr. Opin. Pharmacol. 8 (2008) 627–631. [7] R.M. Lu, Y.C. Hwang, I.J. Liu, C.C. Lee, H.Z. Tsai, H.J. Li, H.C. Wu, Development of therapeutic antibodies for the treatment of diseases, J. Biomed. Sci. 27 (2020) 1–30. [8] H. Kaplon, M. Muralidharan, Z. Schneider, J.M. Reichert, Antibodies to watch in 2020, mAbs 12 (2020) 1703531–1703554. [9] P. Hubert, S. Amigorena, Antibody-dependent cell cytotoxicity in monoclonal antibody-mediated tumor immunotherapy, Oncoimmunology 1 (2012) 103–105. [10] G. Toth, A. Szoor, L. Simon, Y. Yarden, J. Szollosi, G. Vereb, The combination of trastuzumab and pertuzumab administered at approved doses may delay development of trastuzumab resistance by additively enhancing antibodydependent cell-mediated cytotoxicity, mAbs 8 (2016) 1361–1370. [11] D. Ernst, B.A. Williams, X.H. Wang, N. Yoon, K.P. Kim, J. Chiu, Z.J. Luo, K.G. Hermans, J. Krueger, A. Keating, Humanized anti-CD123 antibody facilitates NK cell antibody-dependent cell-mediated cytotoxicity (ADCC) of Hodgkin lymphoma targets via ARF6/PLD-1, Blood Cancer J. 9 (2019) 6–16. [12] T. Nakajima, H. Okayama, M. Ashizawa, M. Noda, K. Aoto, M. Saito, T. Monma, S. Ohki, M. Shibata, S. Takenoshita, K. Kono, Augmentation of antibodydependent cellular cytotoxicity with defucosylated monoclonal antibodies in patients with GI-tract cancer, Oncol. Lett. 15 (2018) 2604–2610. [13] L.M. Rogers, S. Veeramani, G.J. Weiner, Complement in monoclonal antibody therapy of cancer, Immunol. Res. 59 (2014) 203–210. [14] M.T. Winkler, R.T. Bushey, E.B. Gottlin, M.J. Campa, E.S. Guadalupe, A.D. Volkheimer, J.B. Weinberg, E.F. Patz Jr., Enhanced CDC of B cell chronic lymphocytic leukemia cells mediated by rituximab combined with a novel anti-complement factor H antibody, PLoS ONE 12 (2017) e0179841–0179852. [15] G. Kohler, C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256 (1975) 495–497. [16] M. Tomita, K. Tsumoto, Hybridoma technologies for antibody production, Immunotherapy. 3 (2011) 371–380. [17] J.G.R. Hurrell, Monoclonal Hybridoma Antibodies: Techniques and Applications, CRC Press, 2018. [18] S. Zaroff, G. Tan, Hybridoma technology: the preferred method for monoclonal antibody generation for in vivo applications, Biotechniques 67 (2019) 90–92. [19] P. Holzlohner, K. Hanack, Generation of murine monoclonal antibodies by hybridoma technology, J. Visualized Exp. (2017) e54832–54838. [20] C. Zhang, Hybridoma technology for the generation of monoclonal antibodies, Methods Mol. Biol. 901 (2012) 117–135. [21] R.M. Hnasko, L.H. Stanker, Hybridoma technology, Methods Mol. Biol. 1318 (2015) 15–28. [22] S. Pandey, Hybridoma technology for production of monoclonal antibodies, Hybridoma 1 (2010) 88–94. [23] R.J. Ober, C.G. Radu, V. Ghetie, E.S. Ward, Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies, Int. Immunol. 13 (2001) 1551–1559. [24] M. Stern, R. Herrmann, Overview of monoclonal antibodies in cancer therapy: present and promise, Crit. Rev. Oncol. Hematol. 54 (2005) 11–29. [25] C.M. Hammers, J.R. Stanley, Antibody phage display: technique and applications, J, Invest. Dermatol. 134 (2014) 1–5. [26] M.A. Alfaleh, H.O. Alsaab, A.B. Mahmoud, A.A. Alkayyal, M.L. Jones, S.M. Mahler, A.M. Hashem, Phage display derived monoclonal antibodies: from bench to bedside, Front. Immunol. 11 (2020) 1986–2022. [27] M.L. Chiu, G.L. Gilliland, Engineering antibody therapeutics, Curr. Opin. Struct. Biol. 38 (2016) 163–173. [28] S.A. Sievers, L. Scharf, A.P. West Jr., P.J. Bjorkman, Antibody engineering for increasedpotency,breadthandhalf-life, Curr. Opin. HIV AIDS10(2015)151–159. [29] A. Thakur, M. Huang, L.G. Lum, Bispecific antibody based therapeutics: Strengths and challenges, Blood Rev. 32 (2018) 339–347. [30] U. Brinkmann, R.E. Kontermann, The making of bispecific antibodies, mAbs 9 (2017) 182–212. [31] Z. Liu, E.C. Leng, K. Gunasekaran, M. Pentony, M. Shen, M. Howard, J. Stoops, K. Manchulenko, V. Razinkov, H. Liu, W. Fanslow, Z. Hu, N. Sun, H. Hasegawa, R. Clark, I.N. Foltz, W. Yan, A novel antibody engineering strategy for making monovalent bispecific heterodimeric IgG antibodies by electrostatic steering mechanism, J. Biol. Chem. 290 (2015) 7535–7562. [32] N. Tsurushita, P.R. Hinton, S. Kumar, Design of humanized antibodies: from anti-Tac to Zenapax, Methods 36 (2005) 69–83. [33] A. Jakobovits, R.G. Amado, X. Yang, L. Roskos, G. Schwab, From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice, Nat. Biotechnol. 25 (2007) 1134–1143. [34] A. Frenzel, T. Schirrmann, M. Hust, Phage display-derived human antibodies in clinical development and therapy, mAbs 8 (2016) 1177–1194. [35] P. Tyagi, Recent results and ongoing trials with panitumumab (ABX-EGF), a fully human anti-epidermal growth factor receptor antibody, in metastatic colorectal cancer, Clin. Colorectal.Cancer 5 (2005) 21–23. [36] H. Waldmann, Human monoclonal antibodies: the benefits of humanization, Methods Mol. Biol. 2019 (1904) 1–10. [37] L. Loo, M.K. Robinson, G.P. Adams, Antibody engineering principles and applications, Cancer J. 14 (2008) 149–153. [38] D.G. Maloney, A.J. Grillo-Lopez, C.A. White, D. Bodkin, R.J. Schilder, J.A. Neidhart, N. Janakiraman, K.A. Foon, T.M. Liles, B.K. Dallaire, K. Wey, I. Royston, T. Davis, R. Levy, IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma, Blood 90 (1997) 2188–2195. [39] D.G. Maloney, A.J. Grillo-Lopez, D.J. Bodkin, C.A. White, T.M. Liles, I. Royston, C. Varns, J. Rosenberg, R. Levy, IDEC-C2B8: results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin’s lymphoma, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 15 (1997) 3266–3274. [40] D. Zahavi, L. Weiner, Monoclonal antibodies in cancer therapy, Antibodies 9 (2020) 34–53. [41] J.K.H. Liu, The history of monoclonal antibody development –Progress, remaining challenges and future innovations, Ann. Med. Surg. 3 (2014) 113–116. [42] N. Stergiou, J. Nagel, S. Pektor, A.S. Heimes, J. Jakel, W. Brenner, M. Schmidt, M. Miederer, H. Kunz, F. Roesch, E. Schmitt, Evaluation of a novel monoclonal antibody against tumor-associated MUC1 for diagnosis and prognosis of breast cancer, Int. J. Med. Sci. 16 (2019) 1188–1198. [43] X. Zhang, G. Soori, T.J. Dobleman, G.G. Xiao, The application of monoclonal antibodies in cancer diagnosis, Expert Rev. Mol. Diagn. 14 (2014) 97–106. [44] R.P. Taylor, M.A. Lindorfer, The role of complement in mAb-based therapies of cancer, Methods 65 (2014) 18–27. [45] K.J. Hamblett, P.D. Senter, D.F. Chace, M.M. Sun, J. Lenox, C.G. Cerveny, K.M. Kissler, S.X. Bernhardt, A.K. Kopcha, R.F. Zabinski, D.L. Meyer, J.A. Francisco, Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 10 (2004) 7063–7070. [46] A. Wolska-Washer, T. Robak, Safety and tolerability of antibody-drug conjugates in cancer, Drug Saf. 42 (2019) 295–314. [47] Y. Si, S. Kim, E. Zhang, Y. Tang, R. Jaskula-Sztul, J.M. Markert, H. Chen, L. Zhou, X.M. Liu, Targeted exosomes for drug delivery: biomanufacturing, surface tagging, and validation, Biotechnol. J. 15 (2020) e1900163–1900174. [48] W. Wang, S. Singh, D.L. Zeng, K. King, S. Nema, Antibody Structure, Instability, and Formulation, J. Pharm. Sci. 96 (2007) 1–26. [49] R. Jefferis, J. Lund, Interaction sites on human IgG-Fc for FccR: current models, Immunol. Lett. 82 (2002) 57–65. [50] H. Liu, K. May, Disulfide bond structures of IgG molecules, mAbs 4 (2012) 17–23. [51] G. Vidarsson, G. Dekkers, T. Rispens, IgG subclasses and allotypes: from structure to effector functions, Front. Immunol. 5 (2014) 1–17. [52] X.-R. Jiang, A. Song, S. Bergelson, T. Arroll, B. Parekh, K. May, S. Chung, R. Strouse, A. Mire-Sluis, M. Schenerman, Advances in the assessment and control of the effector functions of therapeutic antibodies, Nat. Rev. Drug Discovery 10 (2011) 101–111. [53] Z.K. Indik, J. Park, S. Hunter, A.D. Schreiber, The molecular dissection of Fcy receptor mediated phagocytosis, J. Am. Soc. Hematol. 86 (1995) 4389–4399. [54] L.M. Weiner, R. Surana, S. Wang, Monoclonal antibodies: versatile platforms for cancer immunotherapy, Nat. Rev. Immunol. 10 (2010) 317–327. [55] C. Janeway, Immunobiology: The Immune System in Health and Disease, Garland Science, Taylor & Francis Group, 1999. [56] A.F. LoBuglio, R.H. Wheeler, J. Trang, A. Haynes, K. Rogers, E.B. Harvey, L. Sun, J. Ghrayeb, M.B. Khazaeli, Mouse/human chimeric monoclonal antibody in man: Kinetics and immune response, Proc. Natl. Acad. Sci. USA 86 (1989) 4220–4224. [57] J.J. Tjandra, L. Ramadi, I.F. McKenzie, Development of human anti-murine antibody (HAMA) response in patients, Immunol. Cell Biol. 68 (1990) 367–376. [58] S.L. Morrison, M.J. Johnson, L.A. Herzenberg, V.T. Oi, Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains, Proc. Natl. Acad. Sci. USA 81 (1984) 6851–6855. [59] L.G. Presta, Engineering of therapeutic antibodies to minimize immunogenicity and optimize function, Adv. Drug Deliv. Rev. 58 (2006) 640–656. [60] P.T. Jones, P.H. Dear, J. Foote, M.S. Neuberger, G. Winter, Replacing the complementarity-determining regions in a human antibody with those from a mouse, Nature 321 (1986) 522–525. [61] J. McCafferty, A.D. Griffiths, G. Winter, D.J. Chiswell, Phage antibodies: filamentous phage displaying antibody variable domains, Nature 348 (1990) 552–554. [62] G. Winter, A.D. Griffiths, R.E. Hawkins, H.R. Hoogenboom, Making antibodies by phage display technology, Annu. Rev. Immunol. 12 (1994) 433–455. [63] H. Thie, T. Meyer, T. Schirrmann, M. Hust, S. Dubel, Phage display derived therapeutic antibodies, Curr. Pharm. Biotechnol. 9 (2008) 439–446. [64] G.L. Boulianne, N. Hozumi, M.J. Shulman, Production of functional chimaeric mouse/human antibody, Nature 312 (1984) 643–646. [65] N. Lonberg, L.D. Taylor, F.A. Harding, M. Trounstine, K.M. Higgins, S.R. Schramm, C.C. Kuo, R. Mashayekh, K. Wymore, J.G. McCabe, et al., Antigenspecific human antibodies from mice comprising four distinct genetic modifications, Nature 368 (1994) 856–859. [66] L.L. Green, M.C. Hardy, C.E. Maynard-Currie, H. Tsuda, D.M. Louie, M.J. Mendez, H. Abderrahim, M. Noguchi, D.H. Smith, Y. Zeng, N.E. David, H. Sasai, D. Garza, D.G. Brenner, J.F. Hales, R.P. McGuinness, D.J. Capon, S. Klapholz, A. Jakobovits, Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs, Nat. Genet. 7 (1994) 13–21. [67] M. Brüggemann, M.J. Osborn, B. Ma, J. Hayre, S. Avis, B. Lundstrom, R. Buelow, Human antibody production in transgenic animals, Archivum immunologiae et therapiae experimentalis 63 (2015) 101–108. [68] N. Lonberg, Fully human antibodies from transgenic mouse and phage display platforms, Curr. Opin. Immunol. 20 (2008) 450–459. [69] G. Galizia, E. Lieto, F. De Vita, M. Orditura, P. Castellano, T. Troiani, V. Imperatore, F. Ciardiello, Cetuximab, a chimeric human mouse antiepidermal growth factor receptor monoclonal antibody, in the treatment of human colorectal cancer, Oncogene 26 (2007) 3654–3660. [70] A.Y. Liu, R.R. Robinson, K.E. Hellstron, E.D. Murray, C.P. Chang, I. Hellstrom, Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells, Proc. Natl. Acad. Sci. USA 84 (1987) 3439–3443. [71] N.I. Goldstein, M. Prewett, K. Zuklys, P. Rockwell, J. Mendelsohn, Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human Tumor Xenograft model, Clin. Cancer Res. 1 (1995) 1311–1318. [72] J. Mendelsohn, M. Prewett, P. Rockwell, N.I. Goldstein, CCR 20th anniversary commentary: a chimeric antibody, C225, inhibits EGFR activation and tumor growth, Clin. Cancer Res. 21 (2015) 227–229. [73] M. Changes, Highlights of Prescribing Information-cetuximab, Package Insert 50 (2004) 1–25. [74] S. Maximiano, P. Magalhaes, M.P. Guerreiro, M. Morgado, Trastuzumab in the treatment of breast cancer, BioDrugs 30 (2016) 75–86. [75] A. Hajjar, M.A. Ergun, O. Alagoz, M. Rampurwala, Cost-effectiveness of adjuvant paclitaxel and trastuzumab for early-stage node-negative, HER2- positive breast cancer, PLoS ONE 14 (2019) e0217778–0217791. [76] S.M. Tolaney, W.T. Barry, C.T. Dang, D.A. Yardley, B. Moy, P.K. Marcom, K.S. Albain, H.S. Rugo, M. Ellis, I. Shapira, A.C. Wolff, L.A. Carey, B.A. Overmoyer, A. H. Partridge, H. Guo, C.A. Hudis, I.E. Krop, H.J. Burstein, E.P. Winer, Adjuvant paclitaxel and trastuzumab for node-negative, HER2-positive breast cancer, New Engl. J. Med. 372 (2015) 134–141. [77] M.A. Molina, J. Codony-Servat, J. Albanell, F. Rojo, J. Arribas, J. Baselga, Trastuzumab (Herceptin), a Humanized Anti-HER2 Receptor Monoclonal Antibody, Inhibits Basal and Activated HER2 Ectodomain Cleavage in Breast Cancer Cells, Cancer Research 61 (2001) 4744–4749. [78] L. Jiang, T. Jiang, J. Luo, Y. Kang, Y. Tong, X. Song, X. Gao, W. Yao, H. Tian, Efficient acquisition of fully human antibody genes against self-proteins by sorting single B cells stimulated with vaccines based on nitrated T helper cell epitopes, J. Immunol. Res. 2019 (2019) 7914326–7914341. [79] I. Hellmann, L. Waldmeier, M.C. Bannwarth-Escher, K. Maslova, F.I. Wolter, U. Grawunder, R.R. Beerli, Novel antibody drug conjugates targeting tumorassociated receptor tyrosine kinase ROR2 by functional screening of fully human antibody libraries using transpo-mAb display on progenitor B cells, Front. Immunol. 9 (2018) 2490–2505. [80] B. Boll, H. Hansen, F. Heuck, K. Reiners, P. Borchmann, A. Rothe, A. Engert, E. Pogge von Strandmann, The fully human anti-CD30 antibody 5F11 activates NF-{kappa}B and sensitizes lymphoma cells to bortezomib-induced apoptosis, Blood 106 (2005) 1839–1842. [81] A.L. Nelson, E. Dhimolea, J.M. Reichert, Development trends for human monoclonal antibody therapeutics, Nat. Rev. Drug Discov. 9 (2010) 767–774. [82] Q. Wang, Y. Chen, J. Park, X. Liu, Y. Hu, T. Wang, K. McFarland, M.J. Betenbaugh, Design and production of bispecific antibodies, Antibodies (Basel) 8 (2019), antib8030043-8030062. [83] J. Golay, S. Choblet, J. Iwaszkiewicz, P. Cerutti, A. Ozil, S. Loisel, M. Pugniere, G. Ubiali, V. Zoete, O. Michielin, C. Berthou, J. Kadouche, J.P. Mach, M. DuonorCerutti, Design and validation of a novel generic platform for the production of tetravalent IgG1-like bispecific antibodies, J. Immunol. 196 (2016) 3199–3211. [84] F. Liu, S. Guttikonda, M.R. Suresh, Bispecific monoclonal antibodies against a viral and an enzyme: utilities in ultrasensitive virus ELISA and phage display technology, J. Immunol. Methods 274 (2003) 115–127. [85] S.E. Sedykh, V.V. Prinz, V.N. Buneva, G.A. Nevinsky, Bispecific antibodies: design, therapy, perspectives, Drug Des. Devel. Ther. 12 (2018) 195–208. [86] K.E. Tiller, P.M. Tessier, Advances in antibody design, Annu. Rev. Biomed. Eng. 17 (2015) 191–216. [87] Z. Elgundi, M. Reslan, E. Cruz, V. Sifniotis, V. Kayser, The state-of-play and future of antibody therapeutics, Adv. Drug Deliv. Rev. 122 (2017) 2–19. [88] M. Godar, H. de Haard, C. Blanchetot, J. Rasser, Therapeutic bispecific antibody formats: a patent applications review (1994–2017), Expert Opin. Ther. Pat. 28 (2018) 251–276. [89] L.L. Sun, D. Ellerman, M. Mathieu, M. Hristopoulos, X. Chen, Y. Li, X. Yan, R. Clark, A. Reyes, E. Stefanich, E. Mai, J. Young, C. Johnson, M. Huseni, X. Wang, et al., Anti-CD20/CD3 T cell-dependent bispecific antibody for the treatment of B cell malignancies, Sci. Transl. Med. 7 (2015), 287ra270-279. [90] H. Yao, F. Jiang, A. Lu, G. Zhang, Methods to design and synthesize antibodydrug conjugates (ADCs), Int. J. Mol. Sci. 17 (2016) 194–205. [91] J.R. McCombs, S.C. Owen, Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry, AAPS J. 17 (2015) 339–351. [92] L.R. Saunders, A.J. Bankovich, W.C. Anderson, M.A. Aujay, S. Bheddah, K. Black, R. Desai, P.A. Escarpe, J. Hampl, A. Laysang, D. Liu, J. Lopez-Molina, M. Milton, A. Park, M.A. Pysz, et al., A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo, Sci. Transl. Med. 7 (2015), 302ra136-163. [93] L. Zhou, N. Xu, Y. Sun, X.M. Liu, Targeted biopharmaceuticals for cancer treatment, Cancer Lett. 352 (2014) 145–151. [94] H. Almasbak, T. Aarvak, M.C. Vemuri, CAR T cell therapy: a game changer in cancer treatment, J. Immunol. Res. 2016 (2016) 5474602–5474611. [95] H. Dai, Y. Wang, X. Lu, W. Han, Chimeric antigen receptors modified T-cells for cancer therapy, J. Natl Cancer Inst. 108 (2016), djv439-552. [96] M.S. Magee, A.E. Snook, Challenges to chimeric antigen receptor (CAR)-T cell therapy for cancer, Discov. Med. 18 (2014) 265–271. [97] B.L. Zhang, D.Y. Qin, Z.M. Mo, Y. Li, W. Wei, Y.S. Wang, W. Wang, Y.Q. Wei, Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors, Sci. China Life Sci. 59 (2016) 340–348. [98] R. Kunert, D. Reinhart, Advances in recombinant antibody manufacturing, Appl. Microbiol. Biotechnol. 100 (2016) 3451–3461. [99] P. Polakis, Antibody drug conjugates for cancer therapy, Pharmacol. Rev. 68 (2016) 3–19. [100] C.C. Zhang, Z. Yan, B. Pascual, A. Jackson-Fisher, D.S. Huang, Q. Zong, M. Elliott, C. Fan, N. Huser, J. Lee, M. Sung, P. Sapra, Gemtuzumab Ozogamicin (GO) inclusion to induction chemotherapy eliminates leukemic initiating cells and significantly improves survival in mouse models of acute myeloid Leukemia, Neoplasia 20 (2018) 1–11. [101] M. Gottardi, F. Mosna, S. de Angeli, C. Papayannidis, A. Candoni, M. Clavio, C. Tecchio, A. Piccin, M.C. dell’Orto, F. Benedetti, G. Martinelli, F. Gherlinzoni, Clinical and experimental efficacy of gemtuzumab ozogamicin in core binding factor acute myeloid leukemia, Hematol Rep. 9 (2017) 87–90. [102] F.R. Appelbaum, I.D. Bernstein, Gemtuzumab ozogamicin for acute myeloid leukemia, Blood 130 (2017) 2373–2376. [103] J.K. Lamba, L. Chauhan, M. Shin, M.R. Loken, J.A. Pollard, Y.C. Wang, R.E. Ries, R. Aplenc, B.A. Hirsch, S.C. Raimondi, R.B. Walter, I.D. Bernstein, A.S. Gamis, T. A. Alonzo, S. Meshinchi, CD33 Splicing polymorphism determines gemtuzumab ozogamicin response in De Novo Acute Myeloid Leukemia: report from randomized phase III children’s oncology group trial AAML0531, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 35 (2017) 2674–2682. [104] C.D. Godwin, R.P. Gale, R.B. Walter, Gemtuzumab ozogamicin in acute myeloid leukemia, Leukemia 31 (2017) 1855–1868. [105] C. Selby, L.R. Yacko, A.E. Glode, Gemtuzumab ozogamicin: back again, J. Adv. Pract. Oncol. 10 (2019) 68–82. [106] J. Baron, E.S. Wang, Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia, Expert Rev. Clin. Pharmacol. 11 (2018) 549–559. [107] S. Castaigne, C. Pautas, C. Terré, E. Raffoux, D. Bordessoule, J.-N. Bastie, O. Legrand, X. Thomas, P. Turlure, O. Reman, T. de Revel, L. Gastaud, N. de Gunzburg, N. Contentin, E. Henry, et al., Effect of gemtuzumab ozogamicin on survivalofadultpatients withde-novoacute myeloidleukaemia (ALFA-0701): a randomised, open-label, phase 3 study, Lancet 379 (2012) 1508–1516. [108] D.S. Pereira, C.I. Guevara, L. Jin, N. Mbong, A. Verlinsky, S.J. Hsu, H. Avina, S. Karki, J.D. Abad, P. Yang, S.J. Moon, F. Malik, M.Y. Choi, Z. An, K. Morrison, et al., AGS67E, an anti-CD37 monomethyl auristatin E antibody-drug conjugate as a potential therapeutic for B/T-cell malignancies and AML: a new role for CD37 in AML, Mol. Cancer Ther. 14 (2015) 1650–1660. [109] N.C. Richardson, Y.L. Kasamon, H. Chen, R.A. de Claro, J. Ye, G.M. Blumenthal, A.T. Farrell, R. Pazdur, FDA approval summary: brentuximab vedotin in firstline treatment of peripheral T-cell lymphoma, Oncologist 24 (2019) e180–e187. [110] S. Horwitz, O.A. O’Connor, B. Pro, T. Illidge, M. Fanale, R. Advani, N.L. Bartlett, J.H. Christensen, F. Morschhauser, E. Domingo-Domenech, G. Rossi, W.S. Kim, T. Feldman, A. Lennard, D. Belada, et al., Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial, Lancet 393 (2019) 229–240. [111] C. van der Weyden, M. Dickinson, J. Whisstock, H.M. Prince, Brentuximab vedotin in T-cell lymphoma, Expert Rev. Hematol. 12 (2019) 5–19. [112] H.M. Prince, Y.H. Kim, S.M. Horwitz, R. Dummer, J. Scarisbrick, P. Quaglino, P. L. Zinzani, P. Wolter, J.A. Sanches, P.L. Ortiz-Romero, O.E. Akilov, L. Geskin, J. Trotman, K. Taylor, S. Dalle, et al., Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial, Lancet 390 (2017) 555–566. [113] Z. Zolcsak, D. Loirat, A. Fourquet, Y.M. Kirova, Adjuvant Trastuzumab Emtansine (T-DM1) and concurrent radiotherapy for residual invasive HER2-positive breast cancer: single-center preliminary results, Am. J. Clin. Oncol. 43 (12) (2020) 895–901. [114] K.A. Lyseng-Williamson, Trastuzumab emtansine: a review of its adjuvant use in residual invasive HER2-positive early breast cancer, Drugs 80 (2020) 1723–1730. [115] G. von Minckwitz, C.S. Huang, M.S. Mano, S. Loibl, E.P. Mamounas, M. Untch, N. Wolmark, P. Rastogi, A. Schneeweiss, A. Redondo, H.H. Fischer, W. Jacot, A. K. Conlin, C. Arce-Salinas, I.L. Wapnir, et al., Trastuzumab emtansine for residual invasive HER2-positive breast cancer, New Engl. J. Med. 380 (2019) 617–628. [116] M. Barok, H. Joensuu, J. Isola, Trastuzumab emtansine: mechanisms of action and drug resistance, Breast Cancer Res. 16 (2014) 209–221. [117] I.E. Krop, S.-B. Kim, A. González-Martín, P.M. LoRusso, J.-M. Ferrero, M. Smitt, R. Yu, A.C.F. Leung, H. Wildiers, Trastuzumab emtansine versus treatment of physician’s choice for pretreated HER2-positive advanced breast cancer (TH3RESA): a randomised, open-label, phase 3 trial, Lancet Oncol. 15 (2014) 689–699. |
[1] | Yu Kiat Lin, Yan-Na Sun, Yu Fan, Hui Yi Leong, Dong-Qiang Lin, Shan-Jing Yao. UV/Vis-based process analytical technology to improve monoclonal antibody and host cell protein separation[J]. 中国化学工程学报, 2023, 55(3): 230-235. |
[2] | 丛进阳, 陈薇. PURIFICATION OF RECOMBINANT HUMAN INTERFERON-γ BY IMMUNOAFFINITY CHROMATOGRAPHY WITH MONOCLONAL ANTIBODY[J]. , 1995, 3(3): 125-133. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 260
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 226
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||