中国化学工程学报 ›› 2021, Vol. 33 ›› Issue (5): 1-16.DOI: 10.1016/j.cjche.2020.07.044
• Review • 下一篇
Bee Huah Lim1,2, Edy Herianto Majlan1, Ahmad Tajuddin1, Teuku Husaini1, Wan Ramli Wan Daud1,3, Nabilah Afiqah Mohd Radzuan1, Md. Ahsanul Haque1,4
收稿日期:
2020-03-24
修回日期:
2020-07-09
出版日期:
2021-05-28
发布日期:
2021-08-19
通讯作者:
Edy Herianto Majlan
基金资助:
Bee Huah Lim1,2, Edy Herianto Majlan1, Ahmad Tajuddin1, Teuku Husaini1, Wan Ramli Wan Daud1,3, Nabilah Afiqah Mohd Radzuan1, Md. Ahsanul Haque1,4
Received:
2020-03-24
Revised:
2020-07-09
Online:
2021-05-28
Published:
2021-08-19
Contact:
Edy Herianto Majlan
Supported by:
摘要: Catalyst-coated membranes (CCMs) have gained popularity among membrane electrode assembly (MEA) fabricators for their abilities and advantages compared with those of other methods, such as catalyst-coated substrates (CCSs). CCMs show a profound new analysis for reducing platinum (Pt) catalyst loading. In addition, they increase the total number of reactions that occur on the MEA because of their active area amplification, which leads to an improved catalyst-utilization efficiency rate. Moreover, several characteristics are involved in the MEA fabrication methods. Material-manufacturing effects with regard to catalyst inks and analysis of the overall performance of MEAs prepared by the CCM and CCS methods are deliberated. This deliberation emphasizes the practical approaches in minimizing performance deterioration during the fabrication of MEAs using the CCM method and converses the commercialization of the CCM fabrication method toward developing an end product. Novel research is required for MEA fabrication using the CCM methods to ensure that the fuel cell performance is improved. Therefore, this review is focusing on the pros and cons of both distinguished methods, that is, CCM and CCS fabrication, for better comparison.
Bee Huah Lim, Edy Herianto Majlan, Ahmad Tajuddin, Teuku Husaini, Wan Ramli Wan Daud, Nabilah Afiqah Mohd Radzuan, Md. Ahsanul Haque. Comparison of catalyst-coated membranes and catalyst-coated substrate for PEMFC membrane electrode assembly: A review[J]. 中国化学工程学报, 2021, 33(5): 1-16.
Bee Huah Lim, Edy Herianto Majlan, Ahmad Tajuddin, Teuku Husaini, Wan Ramli Wan Daud, Nabilah Afiqah Mohd Radzuan, Md. Ahsanul Haque. Comparison of catalyst-coated membranes and catalyst-coated substrate for PEMFC membrane electrode assembly: A review[J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 1-16.
[1] | O. Lucon, V. Romeiro, S. Pacca, Reflections on the international climate change negotiations: a synthesis of a working group on carbon emission policy and regulation in Brazil, Energy Policy 59(2013) 938-941. |
[2] | A. Li, B. Lin, Comparing climate policies to reduce carbon emissions in China, Energy Policy 60(2013) 667-674. |
[3] | M.T. Lund, T.K. Berntsen, C. Heyes, Z. Klimont, B.H. Samset, Global and regional climate impacts of black carbon and co-emitted species from the on-road diesel sector, Atmos. Environ. 98(2014) 50-58. |
[4] | S. VijayaVenkataRaman, S. Iniyan, R. Goic, A review of climate change, mitigation and adaptation, Renew. Sust. Energ. Rev. 16(2012) 878-897. |
[5] | T.V. Ramachandra, Shwetmala, decentralised carbon footprint analysis for opting climate change mitigation strategies in India, Renew. Sust. Energ. Rev. 16(2012) 5820-5833. |
[6] | B. Obama, The irreversible momentum of clean energy, Science 355(2017) 126-129. |
[7] | F. Barbir, PEM Fuel Cells, Academic Press Boston(2005). |
[8] | H.J. Alves, C. Bley Junior, R.R. Niklevicz, E.P. Frigo, M.S. Frigo, C.H. Coimbra-Araújo, Overview of hydrogen production technologies from biogas and the applications in fuel cells, Int. J. Hydrog. Energy 38(2013) 5215-5225. |
[9] | H. Kaechele, T.S. Amjath-Babu, T. Kutter, K. Specht, S. Nautiyal, K. Müller, K.V. Raju, Confronting the climate change challenge: discussing the role of rural India under cumulative emission budget approach, Environ. Sci. Pol. 14(2011) 1103-1112. |
[10] | X. Li, Chapter one-thermodynamic performance of fuel cells and comparison with heat engines, in: T.S. Zhao, K.D. Kreuer, T.B.T. Van Nguyen, A.F.C. (Eds.), Adv. Fuel Cell, Elsevier, Amsterdam (2007) 1-46. |
[11] | J.S. Hulett, Method of making MEA for PEM/SPE Fuel Cell, US Pat., 6074692(2000). |
[12] | F. Barbir, PEM fuel cells, Fuel Cell Technol, Springer, London (2002-2018) 27-51. |
[13] | E.H. Majlan, D. Rohendi, W.R.W. Daud, T. Husaini, M.A. Haque, Electrode for proton exchange membrane fuel cells: a review, Renew. Sust. Energ. Rev. 89(2018) 117-134. |
[14] | F. Lapicque, C. Bonnet, B.T. Huang, Y. Chatillon, Analysis and Evaluation of Aging Phenomena in PEMFCs, in: A.C.E. Sundmacher (Ed.), Fuel Cell Eng, Elsevier, Amsterdam (2012) 265-330. |
[15] | E. Lee, D. Kim, C. Pak, Effects of cathode catalyst layer fabrication parameters on the performance of high-temperature polymer electrolyte membrane fuel cells, Appl. Surf. Sci. 510(2020) 145461. |
[16] | T. Elmer, M. Worall, S. Wu, S.B. Riffat, Fuel cell technology for domestic built environment applications: state of-the-art review, Renew. Sust. Energ. Rev. 42(2015) 913-931. |
[17] | B. Li, Y.S. Kim, R. Mukundan, J. Fenton, R.L. Borup, Characterization of PEM fuel cell ionomer degradation by use of hydrocarbon ionomer and membranes and membranes, ECS Meet. Abstr. (2010) 2-3. |
[18] | L. Xing, W. Shi, H. Su, Q. Xu, P.K. Das, B. Mao, K. Scott, Membrane electrode assemblies for PEM fuel cells: a review of functional graded design and optimization, Energy. 177(2019) 445-464. |
[19] | O.L. de Weck, D. Reed, Trends in advanced manufacturing technology innovation, Prod. Innov. Econ (2014) 235-262. |
[20] | F.A. de Bruijn, R.C. Makkus, R.K.A.M. Mallant, G.J.M. Janssen, Chapter five-materials for state-of-the-art PEM fuel cells, and their suitability for operation above 100℃, in: T.S. Zhao, K.D. Kreuer, T.B.T. Van Nguyen, A.F.C. (Eds.), Adv. Fuel Cell, Elsevier, Amsterdam (2007) 235-336. |
[21] | J. Zhang, PEM Fuel Cell Electrocatalysts and Catalyst Layers, Fundamentals and Applications, Springer, London (2008). |
[22] | S.H. Joo, K. Kwon, D.J. You, C. Pak, H. Chang, J.M. Kim, Preparation of high loading Pt nanoparticles on ordered mesoporous carbon with a controlled Pt size and its effects on oxygen reduction and methanol oxidation reactions, Electrochim. Acta 54(2009) 5746-5753. |
[23] | M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells, Nature. 486(2012) 43-51. |
[24] | A.A. Gewirth, M.S. Thorum, Electroreduction of dioxygen for fuel-cell applications: materials and challenges, Inorg. Chem. 49(2010) 3557-3566. |
[25] | J. Tollefson, Hydrogen vehicles: fuel of the future? Nature. 464(2010) 1262-1264. |
[26] | K. Ben Liew, W.R.W. Daud, M. Ghasemi, J.X. Leong, S. Su Lim, M. Ismail, Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: a review, Int. J. Hydrog. Energy 39(2014) 4870-4883. |
[27] | L. Chen, G. Wu, E.F. Holby, P. Zelenay, W.Q. Tao, Q. Kang, Lattice boltzmann porescale investigation of coupled physical-electrochemical processes in C/Pt and non-precious metal cathode catalyst layers in proton exchange membrane fuel cells, Electrochim. Acta 158(2015) 175-186. |
[28] | G.S. Tasic, S.S. Miljanic, M.P. Marceta Kaninski, D.P. Saponjic, V.M. Nikolic, Nonnoble metal catalyst for a future Pt free PEMFC, Electrochem. Commun. 11(2009) 2097-2100. |
[29] | D. Banham, S. Ye, K. Pei, J. Ozaki, T. Kishimoto, Y. Imashiro, A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells, J. Power Sources 285(2015) 334-348. |
[30] | S.D. Poynton, J.P. Kizewski, R.C.T. Slade, J.R. Varcoe, Novel electrolyte membranes and non-Pt catalysts for low temperature fuel cells, Solid State Ionics 181(2010) 219-222. |
[31] | S.A. Grigoriev, E.K. Lyutikova, S. Martemianov, V.N. Fateev, On the possibility of replacement of Pt by Pd in a hydrogen electrode of PEM fuel cells, Int. J. Hydrog. Energy 32(2007) 4438-4442. |
[32] | W.Y. Wong, W.R.W. Daud, A.B. Mohamad, K.S. Loh, Effect of temperature on the oxygen reduction reaction kinetic at nitrogen-doped carbon nanotubes for fuel cell cathode, Int. J. Hydrog. Energy 40(2015) 11444-11450. |
[33] | C.Y. Wong, W.Y. Wong, K. Ramya, M. Khalid, K.S. Loh, W.R.W. Daud, K.L. Lim, R. Walvekar, A.A.H. Kadhum, Additives in proton exchange membranes for lowand high-temperature fuel cell applications: a review, Int. J. Hydrog. Energy 44(2019) 6116-6135. |
[34] | L. Wang, X. Wan, S. Liu, L. Xu, J. Shui, Fe-N-C catalysts for PEMFC: progress towards the commercial application under DOE reference, J. Energy Chem. 39(2019) 77-87. |
[35] | S. Shahgaldi, I. Alaefour, X. Li, Impact of manufacturing processes on proton exchange membrane fuel cell performance, Appl. Energy 225(2018) 1022-1032. |
[36] | E.H. Reddy, S. Jayanti, D.S. Monder, Thermal management of high temperature polymer electrolyte membrane fuel cell stacks in the power range of 1-10 kWe, Int. J. Hydrog. Energy 39(2014) 20127-20138. |
[37] | S. Towne, V. Viswanathan, J. Holbery, P. Rieke, Fabrication of polymer electrolyte membrane fuel cell MEAs utilizing inkjet print technology, J. Power Sources 171(2007) 575-584. |
[38] | H. Tang, S. Wang, S.P. Jiang, M. Pan, A comparative study of CCM and hot-pressed MEAs for PEM fuel cells, J. Power Sources 170(2007) 140-144. |
[39] | X. Cheng, B. Yi, M. Han, J. Zhang, Y. Qiao, J. Yu, Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells, J. Power Sources 79(1999) 75-81. |
[40] | J.M. Song, S.Y. Cha, W.M. Lee, Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method, J. Power Sources 94(2001) 78-84. |
[41] | S.E. Iyuke, A.B. Mohamad, A.A.H. Kadhum, W.R.W. Daud, C. Rachid, Improved membrane and electrode assemblies for proton exchange membrane fuel cells, J. Power Sources 114(2003) 195-202. |
[42] | S. Gamburzev, A.J. Appleby, Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC), J. Power Sources 107(2002) 5-12. |
[43] | Y.G. Chun, C.S. Kim, D.H. Peck, D.R. Shin, Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes, J. Power Sources 71(1998) 174-178. |
[44] | Y.H. Cho, H.S. Park, Y.H. Cho, I.S. Park, Y.E. Sung, The improved methanol tolerance using Pt/C in cathode of direct methanol fuel cell, Electrochim. Acta 53(2008) 5909-5912. |
[45] | C.S. Kim, Y.G. Chun, D.H. Peck, D.R. Shin, A novel process to fabricate membrane electrode assemblies for proton exchange membrane fuel cells, Int. J. Hydrog. Energy 23(1998) 1045-1048. |
[46] | L.J. Hobson, Y. Nakano, H. Ozu, S. Hayase, Targeting improved DMFC performance, J. Power Sources 104(2002) 79-84. |
[47] | H.K. Lee, J.H. Park, D.Y. Kim, T.H. Lee, A study on the characteristics of the diffusion layer thickness and porosity of the PEMFC, J. Power Sources 131(2004) 200-206. |
[48] | D. Bevers, N. Wagner, M. Von Bradke, Innovative production procedure for low cost PEFC electrodes and electrode/membrane structures, Int. J. Hydrog. Energy 23(1998) 57-63. |
[49] | S. Park, J.W. Lee, B.N. Popov, A review of gas diffusion layer in PEM fuel cells: materials and designs, Int. J. Hydrog. Energy 37(2012) 5850-5865. |
[50] | S. Park, J.W. Lee, B.N. Popov, Effect of carbon loading in microporous layer on PEM fuel cell performance, J. Power Sources 163(2006) 357-363. |
[51] | G. Dotelli, L. Omati, P. Gallo Stampino, Influence of carbon cloth GDLs on electrochemical performance of PEMFCs, ECS Trans. 25(2019) 1803-1810. |
[52] | T.R. Ralph, Low cost electrodes for proton exchange membrane fuel cells, J. Electrochem. Soc. 144(1997) 3845. |
[53] | T. Frey, M. Linardi, Effects of membrane electrode assembly preparation on the polymer electrolyte membrane fuel cell performance, Electrochim. Acta 50(2004) 99-105. |
[54] | Y. Wang, C.Y. Wang, K.S. Chen, Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells, Electrochim. Acta 52(2007) 3965-3975. |
[55] | P.GalloStampino,C.Cristiani,G.Dotelli,L.Omati,L.Zampori,R.Pelosato,M.Guilizzoni, Effect of different substrates, inks composition and rheology on coating deposition of microporous layer (MPL) for PEM-FCs, Catal. Today 147(2009) S30-S35. |
[56] | H.A. Gasteiger, J.E. Panels, S.G. Yan, Dependence of PEM fuel cell performance on catalyst loading, J. Power Sources 127(2004) 162-171. |
[57] | E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti, L. Giorgi, Influence of the structure in low-Pt loading electrodes for polymer electrolyte fuel cells, Electrochim. Acta 43(1998) 3665-3673. |
[58] | E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti, L. Giorgi, Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance, Electrochim. Acta 46(2001) 799-805. |
[59] | E. Antolini, L. Giorgi, A. Pozio, E. Passalacqua, Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC, J. Power Sources 77(1999) 136-142. |
[60] | J.T. Wang, R.F. Savinell, Simulation studies on the fuel electrode of a H2O2 polymer electrolyte fuel cell, Electrochim. Acta 37(1992) 2737-2745. |
[61] | D. Song, Q. Wang, Z. Liu, M. Eikerling, Z. Xie, T. Navessin, S. Holdcroft, A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells, Electrochim. Acta 50(2005) 3347-3358. |
[62] | M.S. Wilson, Membrane catalyst layer for fuel cells, US Pat., 5211984(1993). |
[63] | C.R.Hohenthanner, F.Greinemann, P.Seipel, Process for producing catalyst-coated membranes and membrane-electrode assemblies for fuel cells, Canadian Pat., 2420455C (2003). |
[64] | F.Baumann, R.Zuber, Catalyst-coated ionomer membranes and membrane-electrode assemblies with components having different colours, International Pat., 2004091024(2004). |
[65] | M.Hu, S.Sui, X.Zhu, Q.Yu, G.Cao, X.Hong, H.Tu, A 10kW class PEM fuel cell stack based on the catalyst-coated membrane (CCM) methodInt. J. Hydrog. Energy 31(2006) 1010-1018. |
[66] | M. Yazdanpour, A. Esmaeilifar, S. Rowshanzamir, Effects of hot pressing conditions on the performance of Nafion membranes coated by ink-jet printing of Pt/ MWCNTs electrocatalyst for PEMFCs, Int. J. Hydrog. Energy 37(2012) 11290-11298. |
[67] | W. Wang, S. Chen, J. Li, W. Wang, Fabrication of catalyst coated membrane with screen printing method in a proton exchange membrane fuel cell, Int. J. Hydrog. Energy 40(2015) 4649-4658. |
[68] | J. Hnát, M. Plevova, R.A. Tufa, J. Zitka, M. Paidar, K. Bouzek, Development and testing of a novel catalyst-coated membrane with platinum-free catalysts for alkaline water electrolysis, Int. J. Hydrog. Energy 44(2019) 17493-17504. |
[69] | A. Sadeghi Alavijeh, R.M.H. Khorasany, A. Habisch, G.G. Wang, E. Kjeang, Creep properties of catalyst coated membranes for polymer electrolyte fuel cells, J. Power Sources 285(2015) 16-28. |
[70] | F. Xu, R. Xu, S. Mu, Nano mineral fiber enhanced catalyst coated membranes for improving polymer electrolyte membrane fuel cell durability, J. Power Sources 196(2011) 10563-10569. |
[71] | S. Mu, P. Zhao, C. Xu, Y. Gao, M. Pan, Detaching behaviors of catalyst layers applied in PEM fuel cells by off-line accelerated test, Int. J. Hydrog. Energy 35(2010) 8155-8160. |
[72] | J. Lobato, P. Cañizares, M.A. Rodrigo, C. Ruiz-López, J.J. Linares, Influence of the Teflon loading in the gas diffusion layer of PBI-based PEM fuel cells, J. Appl. Electrochem. 38(2008) 793-802. |
[73] | L. Sun, R. Ran, G. Wang, Z. Shao, Fabrication and performance test of a catalyst-coated membrane from direct spray deposition, Solid State Ionics 179(2008) 960-965. |
[74] | M.S. Saha, D.K. Paul, B.A. Peppley, K. Karan, Fabrication of catalyst-coated membrane by modified decal transfer technique, Electrochem. Commun. 12(2010) 410-413. |
[75] | I.S. Park, W. Li, A. Manthiram, Fabrication of catalyst-coated membrane-electrode assemblies by doctor blade method and their performance in fuel cells, J. Power Sources 195(2010) 7078-7082. |
[76] | S. Yılmaztürk, T. Gümüşoğlu, G.A. Arı, F. Öksüzömer, H. Deligöz, Fabrication and performance of catalyst-coated membranes by layer-by-layer deposition of catalyst onto Nafion for polymer electrolyte membrane fuel cells, J. Power Sources 201(2012) 88-94. |
[77] | T.M. Molter, K.M. Critz, High performance electrolytic cell electrode structures and a process for preparing such electrode structures, US Pat., 5651929A (1995). |
[78] | H.N.Su, S.J.Liao, T.Shu, H.L.Gao, Performance of an ultra-low platinum loading membrane electrode assembly prepared by a novel catalyst-sprayed membrane techniqueJ. Power Sources 195(2010) 756-761. |
[79] | B. Koraishy, J.P. Meyers, K.L. Wood, Manufacturing of membrane electrode assemblies for fuel cells, International conference on manufacturing research (IMCR), Trans. Int. Conf. Endod. 2009, pp. 1-13 https://api.semanticscholar.org/CorpusID:28224345. |
[80] | S.Y. Cha, W.M. Lee, Performance of proton exchange membrane fuel cell electrodes prepared by direct deposition of ultrathin platinum on the membrane surface, J. Electrochem. Soc. 146(1999) 4055. |
[81] | T.H. Yang, Y.G. Yoon, G.G. Park, W.Y. Lee, C.S. Kim, Fabrication of a thin catalyst layer using organic solvents, J. Power Sources 127(2004) 230-233. |
[82] | L. Sun, R. Ran, Z. Shao, Fabrication and evolution of catalyst-coated membranes by direct spray deposition of catalyst ink onto Nafion membrane at high temperature, Int. J. Hydrog. Energy 35(2010) 2921-2925. |
[83] | F. Xie, Z. Shao, M. Hou, H. Yu, W. Song, S. Sun, L. Zhou, B. Yi, Recent progresses in H2-PEMFC at DICP, J. Energy Chem. 36(2019) 129-140. |
[84] | H.J. Cho, H. Jang, S. Lim, E. Cho, T.H. Lim, I.H. Oh, H.J. Kim, J.H. Jang, Development of a novel decal transfer process for fabrication of high-performance and reliable membrane electrode assemblies for PEMFCs, Int. J. Hydrog. Energy 36(2011) 12465-12473. |
[85] | Y.J. Yoon, T.H. Kim, S.U. Kim, D.M. Yu, Y.T. Hong, Low temperature decal transfer method for hydrocarbon membrane based membrane electrode assemblies in polymer electrolyte membrane fuel cells, J. Power Sources 196(2011) 9800-9809. |
[86] | M.S. Wilson, J.A. Valerio, S. Gottesfeld, Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers, Electrochim. Acta 40(1995) 355-363. |
[87] | M.S. Wilson, S. Gottesfeld, Thin-film catalyst layers for polymer electrolyte fuel cell electrodes, J. Appl. Electrochem. 22(1992) 1-7. |
[88] | A. Roy, M.A. Hickner, O. Lane, J.E. McGrath, Investigation of membrane electrode assembly (MEA) processing parameters on performance for wholly aromatic hydrocarbon-based proton exchange membranes, J. Power Sources 191(2009) 550-554. |
[89] | T. Suzuki, Y. Tabuchi, S. Tsushima, S. Hirai, Measurement of water content distribution in catalyst coated membranes under water permeation conditions by magnetic resonance imaging, Int. J. Hydrog. Energy 36(2011) 5479-5486. |
[90] | D.H. Lee, W. Jo, S. Yuk, J. Choi, S. Choi, G. Doo, D.W. Lee, H.T. Kim, In-plane channelstructured catalyst layer for polymer electrolyte membrane fuel cells, ACS Appl. Mater. Interfaces 10(2018) 4682-4688. |
[91] | J. Xie, K.L. More, T.A. Zawodzinski, W.H. Smith, Porosimetry of MEAs made by “thin film decal” method and its effect on performance of PEFCs, J. Electrochem. Soc. 151(2004) A1841. |
[92] | S.Q. Song, Z.X. Liang, W.J. Zhou, G.Q. Sun, Q. Xin, V. Stergiopoulos, P. Tsiakaras, Direct methanol fuel cells: the effect of electrode fabrication procedure on MEAs structural properties and cell performance, J. Power Sources 145(2005) 495-501. |
[93] | J.H. Cho, J.M. Kim, J. Prabhuram, S.Y. Hwang, D.J. Ahn, H.Y. Ha, S.K. Kim, Fabrication and evaluation of membrane electrode assemblies by low-temperature decal methods for direct methanol fuel cells, J. Power Sources 187(2009) 378-386. |
[94] | G. Bender, T.A. Zawodzinski, A.P. Saab, Fabrication of high precision PEFC membrane electrode assemblies, J. Power Sources 124(2003) 114-117. |
[95] | S. Srinivasan, Fuel Cells: From Fundamentals to Applications, Springer, New York (2006). |
[96] | Z.Wang, Y.Nagao, Effects of Nafion impregnation using inkjet printing for membrane electrode assemblies in polymer electrolyte membrane fuel cellsElectrochim. Acta 129(2014) 343-347. |
[97] | G. Squadrito, Preparation of MEA, Fuel Cells and Hydrogen, Elsevier, Amsterdam (2018) 117-138. |
[98] | G.Decher, Fuzzy nanoassemblies: Toward layered polymeric multicompositesScience 277(1997) 1232-1237. |
[99] | M. Michel, A. Taylor, R. Sekol, P. Podsiadlo, P. Ho, N. Kotov, L. Thompson, Highperformance nanostructured membrane electrode assemblies for fuel cells made by layer-by-layer assembly of carbon nanocolloids, Adv. Mater. 19(2007) 3859-3864. |
[100] | T.R. Farhat, P.T. Hammond, Designing a new generation of proton-exchange membranes using layer-by-layer deposition of polyelectrolytes, Adv. Funct. Mater. 15(2005) 945-954. |
[101] | T.R. Farhat, P.T. Hammond, Engineering ionic and electronic conductivity in polymer catalytic electrodes using the layer-by-layer technique, Chem. Mater. 18(2006) 41-49. |
[102] | A.D. Taylor, M. Michel, R.C. Sekol, J.M. Kizuka, N.A. Kotov, L.T. Thompson, Fuel cell membrane electrode assemblies fabricated by layer-by-layer electrostatic selfassembly techniques, Adv. Funct. Mater. 18(2008) 3003-3009. |
[103] | J. Yuan, Z. Wang, Y. Zhang, Y. Shen, D. Han, Q. Zhang, X. Xu, L. Niu, Electrostatic layer-by-layer a of platinum-loaded multiwall carbon nanotube multilayer: A tunable catalyst film for anodic methanol oxidation, Thin Solid Films 516(2008) 6531-6535. |
[104] | T.R. Farhat, P.T. Hammond, Fabrication of a “soft” membrane electrode assembly using layer-by-layer technology, Adv. Funct. Mater. 16(2006) 433-444. |
[105] | J.L. Ok, D.W. Kim, C. Lee, W.C. Choi, S.M. Cho, Y.K. Kang, Methanol barriers derived from layer-by-layer assembly of poly(ethersulfone)s for high performance direct methanol fuel cells, Bull. Kor. Chem. Soc. 29(2008) 842-846. |
[106] | H. Deligöz, S. Yılmaztürk, T. Karaca, H. Özdemir, S.N. Koç, F. Öksüzömer, A. Durmuş, M.A. Gürkaynak, Self-assembled polyelectrolyte multilayered films on Nafion with lowered methanol cross-over for DMFC applications, J. Memb. Sci. 326(2009) 643-649. |
[107] | S.P. Jiang, Z. Liu, Z.Q. Tian, Layer-by-layer self-assembly of composite polyelectrolyte-nafion membranes for direct methanol fuel cells, Adv. Mater. 18(2006) 1068-1072. |
[108] | A.A. Argun, J.N. Ashcraft, P.T. Hammond, Highly conductive, methanol resistant polyelectrolyte multilayers, Adv. Mater. 20(2008) 1539-1543. |
[109] | S. Yılmaztürk, H. Deligöz, M. Yılmazoğlu, H. Damyan, F. Öksüzömer, S.N. Koç, A. Durmuş, M. Ali Gürkaynak, Self-assembly of highly charged polyelectrolyte complexes with superior proton conductivity and methanol barrier properties for fuel cells, J. Power Sources 195(2010) 703-709. |
[110] | E.J. Taylor, Preparation of high-platinum-utilization gas diffusion electrodes for proton-exchange-membrane fuel cells, J. Electrochem. Soc. 139(1992) L45-L46. |
[111] | X. Ren, P. Zelenay, S. Thomas, J. Davey, S. Gottesfeld, Recent advances in direct methanol fuel cells at Los Alamos National Laboratory, J. Power Sources 86(2000) 111-116. |
[112] | C.H. Ma, T.L. Yu, H.L. Lin, Y.T. Huang, Y.L. Chen, U.S. Jeng, Y.H. Lai, Y.S. Sun, Morphology and properties of Nafion membranes prepared by solution casting, Polymer (Guildf). 50(2009) 1764-1777. |
[113] | R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J.E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K. Kimijima, N. Iwashita, Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev. 107(2007) 3904-3951. |
[114] | Y.S. Kim, B. Einsla, M. Sankir, W. Harrison, B.S. Pivovar, Structure-property-performance relationships of sulfonated poly(arylene ether sulfone)s as a polymer electrolyte for fuel cell applications, Polymer (Guildf). 47(2006) 4026-4035. |
[115] | H.Y. Jung, K.Y. Cho, K.A. Sung, W.K. Kim, J.K. Park, The effect of sulfonated poly (ether ether ketone) as an electrode binder for direct methanol fuel cell (DMFC), J. Power Sources 163(2006) 56-59. |
[116] | H.Y. Jung, K.Y. Cho, K.A. Sung, W.K. Kim, M. Kurkuri, J.K. Park, Sulfonated poly (arylene ether sulfone) as an electrode binder for direct methanol fuel cell, Electrochim. Acta 52(2007) 4916-4921. |
[117] | R.N. Bonifácio, A.O. Neto, M. Linardi, Influence of the relative volumes between catalyst and Nafion ionomer in the catalyst layer efficiency, Int. J. Hydrog. Energy 39(2014) 14680-14689. |
[118] | H.Y. Jung, J.Y. Kim, J.K. Park, Effect of Nafion dispersion solvent on the interfacial properties between the membrane and the electrode of a polymer electrolyte membrane-based fuel cell, Solid State Ionics 196(2011) 73-78. |
[119] | M.S. McGovern, E.C. Garnett, C. Rice, R.I. Masel, A. Wieckowski, Effects of Nafion as a binding agent for unsupported nanoparticle catalysts, J. Power Sources 115(2003) 35-39. |
[120] | D. Lee, S. Hwang, Effect of loading and distributions of Nafion ionomer in the catalyst layer for PEMFCs, Int. J. Hydrog. Energy 33(2008) 2790-2794. |
[121] | K.H. Kim, K.Y. Lee, H.J. Kim, E. Cho, S.Y. Lee, T.H. Lim, S.P. Yoon, I.C. Hwang, J.H. Jang, The effects of Nafion® ionomer content in PEMFC MEAs prepared by a catalystcoated membrane (CCM) spraying method, Int. J. Hydrog. Energy 35(2010) 2119-2126. |
[122] | S. Wang, G. Sun, Z. Wu, Q. Xin, Effect of Nafion® ionomer aggregation on the structure of the cathode catalyst layer of a DMFC, J. Power Sources 165(2007) 128-133. |
[123] | A. Mahreni, A.B. Mohamad, A.A.H. Kadhum, W.R.W. Daud, S.E. Iyuke, Nafion/silicon oxide/phosphotungstic acid nanocomposite membrane with enhanced proton conductivity, J. Memb. Sci. 327(2009) 32-40. |
[124] | P. Aldebert, G. Gebel, B. Loppinet, N. Nakamura, Polyelectrolyte effect in perfluorosulfonated ionomer solutions, Polymer (Guildf). 36(1995) 431-434. |
[125] | P. Aldebert, B. Dreyfus, M. Pineri, Small-angle neutron scattering of perfluorosulfonated ionomers in solution, Macromolecules. 19(1986) 2651-2653. |
[126] | B. Loppinet, G. Gebel, C.E. Williams, Small-angle scattering study of perfluorosulfonated ionomer solutions, J. Phys. Chem. B 101(1997) 1884-1892. |
[127] | E. Szajdzinska-Pietek, S. Schlick, A. Plonka, Self-assembling of perfluorinated polymeric surfactants in nonaqueous solvents. Electron spin resonance spectra of nitroxide spin probes in nafion solutions and swollen membranes, Langmuir. 10(1994) 2188-2196. |
[128] | H. Li, S. Schlick, Effect of solvents on phase separation in perfluorinated ionomers, from electron spin resonance of VO2+ in swollen membranes and solutions, Polymer (Guildf). 36(1995) 1141-1146. |
[129] | T.T. Ngo, T.L. Yu, H.L. Lin, Nafion-based membrane electrode assemblies prepared from catalyst inks containing alcohol/water solvent mixtures, J. Power Sources 238(2013) 1-10. |
[130] | A. Therdthianwong, P. Ekdharmasuit, S. Therdthianwong, Fabrication and performance of membrane electrode assembly prepared by a catalyst-coated membrane method: effect of solvents used in a catalyst ink mixture, Energy Fuel 24(2010) 1191-1196. |
[131] | Y. Kang, M. Ren, T. Yuan, Y. Qiao, Z. Zou, H. Yang, Effect of Nafion aggregation in the anode catalytic layer on the performance of a direct formic acid fuel cell, J. Power Sources 195(2010) 2649-2652. |
[132] | T.T. Ngo, T.L. Yu, H.L. Lin, Influence of the composition of isopropyl alcohol/water mixture solvents in catalyst ink solutions on proton exchange membrane fuel cell performance, J. Power Sources 225(2013) 293-303. |
[133] | S.J. Shin, J.K. Lee, H.Y. Ha, S.A. Hong, H.S. Chun, I.H. Oh, Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells, J. Power Sources 106(2002) 146-152. |
[134] | L. Wang, A. Husar, T. Zhou, H. Liu, A parametric study of PEM fuel cell performances, Int. J. Hydrog. Energy 28(2003) 1263-1272. |
[135] | K.H. Kim, K.Y. Lee, S.Y. Lee, E. Cho, T.H. Lim, H.J. Kim, S.P. Yoon, S.H. Kim, T.W. Lim, J. H. Jang, The effects of relative humidity on the performances of PEMFC MEAs with various Nafion® ionomer contents, Int. J. Hydrog. Energy 35(2010) 13104-13110. |
[136] | S. Jeon, J. Lee, G.M. Rios, H.J. Kim, S.Y. Lee, E. Cho, T.H. Lim, J. Hyun Jang, Effect of ionomer content and relative humidity on polymer electrolyte membrane fuel cell (PEMFC) performance of membrane-electrode assemblies (MEAs) prepared by decal transfer method, Int. J. Hydrog. Energy 35(2010) 9678-9686. |
[137] | M.V. Williams, H.R. Kunz, J.M. Fenton, Operation of Nafion®-based PEM fuel cells with no external humidification: influence of operating conditions and gas diffusion layers, J. Power Sources 135(2004) 122-134. |
[138] | M. Amirinejad, S. Rowshanzamir, M.H. Eikani, Effects of operating parameters on performance of a proton exchange membrane fuel cell, J. Power Sources 161(2006) 872-875. |
[139] | G.G. Park, Y.J. Sohn, T.H. Yang, Y.G. Yoon, W.Y. Lee, C.S. Kim, Effect of PTFE contents in the gas diffusion media on the performance of PEMFC, J. Power Sources 131(2004) 182-187. |
[140] | Q. Yan, H. Toghiani, J. Wu, Investigation of water transport through membrane in a PEM fuel cell by water balance experiments, J. Power Sources 158(2006) 316-325. |
[141] | L. Xing, P.K. Das, X. Song, M. Mamlouk, K. Scott, Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: the interaction of Nafion® ionomer content and cathode relative humidity, Appl. Energy 138(2015) 242-257. |
[142] | W. Bi, Q. Sun, Y. Deng, T.F. Fuller, The effect of humidity and oxygen partial pressure on degradation of Pt/C catalyst in PEM fuel cell, Electrochim. Acta 54(2009) 1826-1833. |
[143] | M.G. Santarelli, M.F. Torchio, Experimental analysis of the effects of the operating variables on the performance of a single PEMFC, Energy Convers. Manag. 48(2007) 40-51. |
[144] | J. Zhang, Y. Tang, C. Song, X. Cheng, J. Zhang, H. Wang, PEM fuel cells operated at 0% relative humidity in the temperature range of 23-120℃, Electrochim. Acta 52(2007) 5095-5101. |
[145] | H. Liang, H. Su, B.G. Pollet, S. Pasupathi, Development of membrane electrode assembly for high temperature proton exchange membrane fuel cell by catalyst coating membrane method, J. Power Sources 288(2015) 121-127. |
[146] | H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Appl. Catal. B Environ. 56(2005) 9-35. |
[147] | H. Zhong, H. Zhang, G. Liu, Y. Liang, J. Hu, B. Yi, A novel non-noble electrocatalyst for PEM fuel cell based on molybdenum nitride, Electrochem. Commun. 8(2006) 707-712. |
[148] | M.P. Hogarth, T.R. Ralph, Catalysis for low temperature fuel cells, Platin. Met. Rev. 46(4) (2002) 146-164. |
[149] | Y.H. Cho, H.S. Park, Y.H. Cho, D.S. Jung, H.Y. Park, Y.E. Sung, Effect of platinum amount in carbon supported platinum catalyst on performance of polymer electrolyte membrane fuel cell, J. Power Sources 172(2007) 89-93. |
[150] | D. Rohendi, E.H. Majlan, A.B. Mohamad, W.R. Wan Daud, A.A. Hassan Kadhum, L.K. Shyuan, Characterization of electrodes and performance tests on MEAs with varying platinum content and under various operational conditions, Int. J. Hydrog. Energy 38(2013) 9431-9437. |
[151] | K. Karan, Assessment of transport-limited catalyst utilization for engineering of ultra-low Pt loading polymer electrolyte fuel cell anode, Electrochem. Commun. 9(2007) 747-753. |
[152] | H. Kim, N.P. Subramanian, B.N. Popov, Preparation of PEM fuel cell electrodes using pulse electrodeposition, J. Power Sources 138(2004) 14-24. |
[153] | Z.D. Wei, S.H. Chan, L.L. Li, H.F. Cai, Z.T. Xia, C.X. Sun, Electrodepositing Pt on a Nafion-bonded carbon electrode as a catalyzed electrode for oxygen reduction reaction, Electrochim. Acta 50(2005) 2279-2287. |
[154] | H. Liang, H. Su, B.G. Pollet, V. Linkov, S. Pasupathi, Membrane electrode assembly with enhanced platinum utilization for high temperature proton exchange membrane fuel cell prepared by catalyst coating membrane method, J. Power Sources 266(2014) 107-113. |
[155] | H. Su, L. Xu, H. Zhu, Y. Wu, L. Yang, S. Liao, H. Song, Z. Liang, V. Birss, Self-humidification of a PEM fuel cell using a novel Pt/SiO2/C anode catalyst, Int. J. Hydrog. Energy 35(2010) 7874-7880. |
[156] | X. Leimin, L. Shijun, Y. Lijun, L. Zhenxing, Investigation of a novel catalyst coated membrane method to prepare low-platinum-loading membrane electrode assemblies for PEMFCs, Fuel Cells 9(2009) 101-105. |
[157] | H. Liang, D. Dang, W. Xiong, H. Song, S. Liao, High-performance self-humidifying membrane electrode assembly prepared by simultaneously adding inorganic and organic hygroscopic materials to the anode catalyst layer, J. Power Sources 241(2013) 367-372. |
[158] | H. Liang, L. Zheng, S. Liao, Self-humidifying membrane electrode assembly prepared by adding PVA as hygroscopic agent in anode catalyst layer, Int. J. Hydrog. Energy 37(2012) 12860-12867. |
[159] | Y. Garsany, R.W. Atkinson, B.D. Gould, K.E. Swider-Lyons, High power, low-Pt membrane electrode assemblies for proton exchange membrane fuel cells, J. Power Sources 408(2018) 38-45. |
[160] | Y.H. Cho, S.J. Yoo, I.S. Park, T.Y. Jeon, Y.H. Cho, J.W. Lim, O.J. Kwon, W.S. Yoon, Y.E. Sung, Characteristics and performance of membrane electrode assemblies with operating conditions in polymer electrolyte membrane fuel cell, Electrochim. Acta 56(2010) 717-721. |
[161] | E.A. Ticianelli, Methods to advance technology of proton exchange membrane fuel cells, J. Electrochem. Soc. 135(1988) 2209. |
[162] | Y.H. Cho, J.W. Lim, Y.S. Kang, Y.H. Cho, O.H. Kim, N.H. Kwon, O.J. Kwon, W.S. Yoon, H. Choe, Y.E. Sung, The dependence of performance degradation of membrane electrode assembly on platinum loading in polymer electrolyte membrane fuel cell, Int. J. Hydrog. Energy 37(2012) 2490-2497. |
[163] | S.G. Chalk, J.F. Miller, Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems, J. Power Sources 159(2006) 73-80. |
[164] | R. Benítez, J. Soler, L. Daza, Novel method for preparation of PEMFC electrodes by the electrospray technique, J. Power Sources 151(2005) 108-113. |
[165] | L. Qu, Z. Wang, X. Guo, W. Song, F. Xie, L. He, Z. Shao, B. Yi, Effect of electrode Ptloading and cathode flow-field plate type on the degradation of PEMFC, J. Energy Chem. (2019) 95-103. |
[166] | M. Chisaka, H. Daiguji, Effect of glycerol on micro/nano structures of catalyst layers in polymer electrolyte membrane fuel cells, Electrochim. Acta 51(2006) 4828-4833. |
[167] | S. Thanasilp, M. Hunsom, Effect of MEA fabrication techniques on the cell performance of Pt-Pd/C electrocatalyst for oxygen reduction in PEM fuel cell, Fuel. 89(2010) 3847-3852. |
[168] | J. Xie, F. Garzon, T. Zawodzinski, W. Smith, Ionomer segregation in composite meas and its effect on polymer electrolyte fuel cell performance, J. Electrochem. Soc. 151(2004) A1084. |
[169] | H.S. Park, Y.H. Cho, Y.H. Cho, I.S. Park, N. Jung, M. Ahn, Y.E. Sung, Modified decal method and its related study of microporous layer in PEM fuel cells, J. Electrochem. Soc. 155(2008) B455. |
[170] | C.Y. Jung, W.J. Kim, S.C. Yi, Optimization of catalyst ink composition for the preparation of a membrane electrode assembly in a proton exchange membrane fuel cell using the decal transfer, Int. J. Hydrog. Energy 37(2012) 18446-18454. |
[171] | J. Larminie, A. Dicks, Fuel Cell Systems Explained, John Wiley & Sons, West Sussex (2013) 1-24. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||