[1] Y.L. Liu, D.X. Yu, J.K. Jiang, X. Yu, H. Yao, M.H. Xu, Experimental and numerical evaluation of the performance of a novel compound demister, Desalination 409(2017) 115-127. [2] M.H. Xu, L.S. Yang, X.H. Sun, J.X. Wang, L. Gong, Numerical analysis of flow resistance reduction methods in cyclone separator, J. Taiwan Inst. Chem. Eng. 96(2019) 419-430. [3] H. Al-Fulaij, A. Cipollina, G. Micale, H. Ettouney, D. Bogle, Eulerian-Lagrangian modeling and computational fluid dynamics simulation of wire mesh demisters in MSF plants, Desalination 385(2016) 148-157. [4] J.Y. Huang, F. Zhang, Y.J. Shi, X.Q. Dang, H. Zhang, Y. Shu, S. Deng, Y. Liu, Investigation of a pilot-scale wet electrostatic precipitator for the control of sulfuric acid mist from a simulated WFGD system, J. Aerosol Sci. 100(2016) 38-52. [5] J.Y. Huang, H.M. Wang, Y.J. Shi, F. Zhang, X.Q. Dang, H. Zhang, Y. Shu, S. Deng, Y. Liu, Performance of a pilot-scale wet electrostatic precipitator for the control of sulfuric acid mist, Environ. Sci. Pollut. Res. 23(2016) 19219-19228. [6] J.P. Yan, L.Q. Chen, Q. Lin, Removal of fine particles in WFGD system using the simultaneous acoustic agglomeration and supersaturated vapor condensation, Powder Technol. 315(2017) 106-113. [7] J.P. Yan, L.Q. Chen, L.J. Yang, Combined effect of acoustic agglomeration and vapor condensation on fine particles removal, Chem. Eng. J. 290(2016) 319-327. [8] H.G. Houghton, W.H. Radford, Measurements on eliminators and the development of a new type for use athigh gas velocities, Trans. Am. Chem. Eng. 35(1939) 427-433. [9] A. Bürkholz, Droplet separation, VCH Publishers, New York, 1989. [10] J.Z. Zhao, B.S. Jin, Z.P. Zhong, Study of the separation efficiency of a demister vane with response surface methodology, J. Hazard. Mater. 147(2007) 363-369. [11] B. Zamora, A.S. Kaiser, Comparative efficiency evaluations offour types ofcooling tower drift eliminator, by numerical investigation, Chem. Eng. Sci. 66(2011) 1232-1245. [12] P.W. James, Y. Wang, B.J. Azzopardi, J.P. Hughes, The role of drainage channels in the performance of wave-plate mist eliminators, Chem. Eng. Res. Des. 81(2003) 639-648. [13] F. Kavousi, Y. Behjat, S. Shahhosseini, Optimal design of drainage channel geometry parameters in vane demister liquid-gas separators, Chem. Eng. Res. Des. 91(2013) 1212-1222. [14] G. Venkatesan, N. Kulasekharan, S. Iniyan, Design and selection of curved vane demisters using Taguchi based CFD analysis, Desalination 354(2014) 39-52. [15] M.H.H. Estakhrsar, R. Rafee, Effects of wavelength and number of bends on the performance of zigzag demisters with drainage channels, Appl. Math. Model. 40(2016) 685-699. [16] Y.C. Xu, Z.M. Yang, J.S. Zhang, Study on performance of wave-plate mist eliminator with porous foam layer as enhanced structure. Part I: numerical simulation, Chem. Eng. Sci. 171(2017) 650-661. [17] Y.C. Xu, Z.M. Yang, J.S. Zhang, Study on performance of wave-plate mist eliminator with porous foam layer as enhanced structure. Part II: experiments, Chem. Eng. Sci. 171(2017) 662-671. [18] G. Venkatesan, N. Kulasekharan, S. Iniyan, Numerical analysis of curved vane demisters in estimating water droplet separation efficiency, Desalination 339(2014) 40-53. [19] G. Venkatesan, N. Kulasekharan, S. Iniyan, Influence of turbulence models on the performance prediction of flow through curved vane demisters, Desalination 329(2013) 19-28. [20] A. Bürkholz, Die abscheidung von nebeltropfen in lamellenbündeln, Chemie Ingenieur Technik 51(1979) 1255. [21] C.C.J. Verlaan, Performance of novel mist eliminators, PhD Thesis, Delft University of Technology, Delft, 1991. [22] G.B. Zhou, Z.Z. Feng, Experimental investigations of heat transfer enhancement by plane and curved winglet type vortex generators with punched holes, Int. J. Therm. Sci. 78(2014) 26-35. [23] G.B. Zhou, Q.L. Ye, Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators, Appl. Therm. Eng. 37(2012) 241-248. [24] G.F. Lu, G.B. Zhou, Numerical simulation on performances of plane and curved winglet type vortex generator pairs with punched holes, Int. J. Heat Mass Transf. 102(2016) 679-690. [25] G.F. Lu, G.B. Zhou, Numerical simulation on performances of plane and curved winglet-pair vortex generators in a rectangular channel and field synergy analysis, Int. J. Therm. Sci. 109(2016) 323-333. [26] G.F. Lu, X.Q. Zhai, Analysis on heat transfer and pressure drop of fin-and-oval-tube heat exchangers with tear-drop delta vortex generators, Int. J. Heat Mass Transf. 127(2018) 1054-1063. [27] G.F. Lu, X.Q. Zhai, Effects of curved vortex generators on the air-side performance of fin-and-tube heat exchangers, Int. J. Therm. Sci. 136(2019) 509-518. [28] Z.M. Xu, Z.M. Han, J.T. Wang, Z.D. Liu, The characteristics of heat transfer and flow resistance in a rectangular channel with vortex generators, Int. J. Heat Mass Transf. 116(2018) 61-72. [29] Z.M. Han, Z.M. Xu, J.T. Wang, Numerical simulation on heat transfer characteristics of rectangular vortex generators with a hole, Int. J. Heat Mass Transf. 126(2018) 993-1001. [30] Z.M. Han, Z.M. Xu, J.T. Wang, CaSO4 fouling characteristics on the rectangular channel with half-cylinder vortex generators, Appl. Therm. Eng. 128(2018) 1456-1463. [31] S.A. Morsi, A.J. Alexander, An investigation of particle trajectories in two-phase flow systems, J. Fluid Mech. 55(1972) 193-208. |