[1] H.W. Liu, B.G. Tellez, T. Atallah, M. Barghouty, The role of CO2 capture and storage in Saudi Arabia's energy future, Int. J. Greenhouse Gas Control 11(2012) 163-171. [2] K. Damen, A. Faaij, W. Turkenburg, Pathways towards large-scale implementation of CO2 capture and storage:A case study for the Netherlands, Int. J. Greenhouse Gas Control 3(2) (2009) 217-236. [3] S. Fakher, A. Imqam, Application of carbon dioxide injection in shale oil reservoirs for increasing oil recovery and carbon dioxide storage, Fuel 265(2020) 116944. [4] I. Nowrouzi, A.K. Manshad, A.H. Mohammadi, Effects of dissolved carbon dioxide and ions in water on the dynamic interfacial tension of water and oil in the process of carbonated smart water injection into oil reservoirs, Fuel 243(2019) 569-578. [5] J.Y. You, W. Ampomah, Q. Sun, E.J. Kutsienyo, R.S. Balch, Z.X. Dai, M. Cather, X.Y. Zhang, Machine learning based co-optimization of carbon dioxide sequestration and oil recovery in CO2-EOR project, J. Clean. Prod. 260(2020) 120866. [6] O. Rahmani, Mobility control in carbon dioxide-enhanced oil recovery process using nanoparticle-stabilized foam for carbonate reservoirs, Colloids Surf., A 550(2018) 245-255. [7] G.R. Tick, C.M. McColl, I. Yolcubal, M.L. Brusseau, Gas-phase diffusive tracer test for the in-situ measurement of tortuosity in the vadose zone, Water Air Soil Pollut. 184(1-4) (2007) 355-362. [8] Y.W. Wen, A. Kantzas, Monitoring bitumen-solvent interactions with lowfield nuclear magnetic resonance and X-ray computer-assisted tomography, Energy Fuels 19(4) (2005) 1319-1326. [9] F. Marica, S.A. Jofré, K. Ulrich Mayer, B.J. Balcom, T.A. Al, Determination of spatially-resolved porosity, tracer distributions and diffusion coefficients in porous media using MRI measurements and numerical simulations, J. Contam. Hydrol. 125(1-4) (2011) 47-56. [10] C.E. Muir, B.J. Lowry, B.J. Balcom, Measuring diffusion using the differential form of Fick's law and magnetic resonance imaging, New J. Phys. 13(1) (2011) 015005. [11] Ø. Eide, M.A. Fernø, Z. Alcorn, A. Graue, Visualization of carbon dioxide enhanced oil recovery by diffusion in fractured chalk, SPE J. 21(1) (2016) 112-120. [12] H.J. Sun, H.Z. Li, D.Y. Yang, Coupling heat and mass transfer for a gas mixture-heavy oil system at high pressures and elevated temperatures, Int. J. Heat Mass Transf. 74(2014) 173-184. [13] S.X. Zheng, H.A. Li, H.J. Sun, D.Y. Yang, Determination of diffusion coefficient for alkane solvent-CO2 mixtures in heavy oil with consideration of swelling effect, Ind. Eng. Chem. Res. 55(6) (2016) 1533-1549. [14] S.R. Upreti, A.K. Mehrotra, Diffusivity of CO2, CH4, C2H6 and N2 in Athabasca bitumen, Can. J. Chem. Eng. 80(1) (2002) 116-125. [15] C.D. Yang, Y. Gu, A new method for measuring solvent diffusivity in heavy oil by dynamic pendant drop shape analysis (DPDSA), SPE J. 11(1) (2006) 48-57. [16] C.D. Yang, Y Gu, New experimental method for measuring gas diffusivity in heavy oil by the dynamic pendant drop volume analysis (DPDVA), Ind. Eng. Chem. Res. 44(12) (2005) 4474-4483. [17] D.Y. Yang, Y. Gu, Determination of diffusion coefficients and interface masstransfer coefficients of the crude oil CO2 system by analysis of the dynamic and equilibrium interfacial tensions, Ind. Eng. Chem. Res. 47(15) (2008) 5447-5455. [18] D.Y. Yang, Y. Gu, Visualization of interfacial interactions of crude oil-CO2 systems under reservoir conditions, SPE/DOE Symposium on Improved Oil Recovery, Society of Petroleum Engineers, Tulsa, Oklahoma, 2004. [19] A.K. Tharanivasan, C.D. Yang, Y. Gu, Measurements of molecular diffusion coefficients of carbon dioxide, methane, and propane in heavy oil under reservoir conditions, Energy Fuels 20(6) (2006) 2509-2517. [20] M. Jamialahmadi, M. Emadi, H. Müller-Steinhagen, Diffusion coefficients of methane in liquid hydrocarbons at high pressure and temperature, J. Petrol. Sci. Eng. 53(1-2) (2006) 47-60. [21] K. Athar, M.H. Doranehgard, S. Eghbali, H. Dehghanpour, Measuring diffusion coefficients of gaseous propane in heavy oil at elevated temperatures, J. Therm. Anal. Calorim. 139(4) (2020) 2633-2645. [22] M. Shokouhi, H. Sakhacinia, A.H. Jalili, A.T. Zoghi, A. Mchdizadeh, Experimental diffusion coefficients of CO2 and H2S in some ionic liquids using semi-infinite volume method, J. Chem. Thermodyn. 133(2019) 300-311. [23] K. Kortenbruck, B. Pohrer, E. Schluecker, F. Friedel, I. Ivanovic-Burmazovic, Determination of the diffusion coefficient of CO2 in the ionic liquid EMIM NTf2 using online FTIR measurements, J. Chem. Thermodyn. 47(2012) 76-80. [24] H. Sheikha, A.K. Mehrotra, M. Pooladi-Darvish, An inverse solution methodology for estimating the diffusion coefficient of gases in Athabasca bitumen from pressure-decay data, J. Petrol. Sci. Eng. 53(3-4) (2006) 189-202. [25] S.R. Upreti, A.K. Mehrotra, Experimental measurement of gas diffusivity in bitumen:Results for carbon dioxide, Ind. Eng. Chem. Res. 39(4) (2000) 1080-1087. [26] A.K. Mehrotra, W.Y. Svrcek, Correlations for properties of bitumen saturated with CO2, CH4 and N2, and experiments with combustion gas mixtures, J. Can. Petrol. Technol. 21(06) (1982) 95-104. [27] F.J. Pacheco-Roman, S. Hossein Hejazi, Estimation of solubility and diffusivity of gases in heavy oils by use of late-time pressure-decay data:An analytical/graphical approach, SPE J. 20(4) (2015) 717-728. [28] J.P. Yu, C. Tang, Y. Guan, S. Yao, Z. Zhu, Sorption and diffusion behavior of carbon dioxide into poly (l-lactic acid) films at elevated pressures, Chin. J. Chem. Eng. 21(11) (2013) 1296-1302. [29] S.R. Etminan, B.B. Maini, Z. Chen, H. Hassanzadeh, Constant-pressure technique for gas diffusivity and solubility measurements in heavy oil and bitumen, Energy Fuels 24(1) (2010) 533-549. [30] S.R. Etminan, M. Pooladi-Darvish, B.B. Maini, Z. Chen, Modeling the interface resistance in low soluble gaseous solvents-heavy oil systems, Fuel 105(2013) 672-687. [31] S.R. Etminan, B.B. Maini, Z. Chen, Determination of mass transfer parameters in solvent-based oil recovery techniques using a non-equilibrium boundary condition at the interface, Fuel 120(2014) 218-232. [32] S. Li, Y. Wang, K. Zhang, C. Qiao, Diffusion behavior of supercritical CO2 in micro-to nanoconfined pores, Ind. Eng. Chem. Res. 58(47) (2019) 21772-21784. [33] S. Li, C. Qiao, C. Zhang, Z. Li, Determination of diffusion coefficients of supercritical CO2 under tight oil reservoir conditions with pressure-decay method, J. CO2 Util. 24(2018) 430-443. [34] Y.P. Zhang, C.L. Hyndman, B.B. Maini, Measurement of gas diffusivity in heavy oils, J. Petrol. Sci. Eng. 25(1-2) (2000) 37-47. [35] W. Lu, H. Guo, I.M. Chou, R.C. Burruss, L. Li, Determination of diffusion coefficients of carbon dioxide in water between 268 and 473 K in a highpressure capillary optical cell with in situ Raman spectroscopic measurements, Geochim. Cosmochim. Acta 115(2013) 183-204. [36] S.P. Cadogan, G.C. Maitland, J.P. Martin Trusler, Diffusion coefficients of CO2 and N2 in water at temperatures between 298.15 K and 423.15 K at pressures up to 45 MPa, J. Chem. Eng. Data 59(2) (2014) 519-525. [37] G. Kravanja, M. Škerget, Ž. Knez, M.K. Hrnčič, Diffusion coefficients of water and propylene glycol in supercritical CO2 from pendant drop tensiometry, J. Supercrit. Fluids 133(2018) 1-8. |