中国化学工程学报 ›› 2021, Vol. 35 ›› Issue (7): 124-142.DOI: 10.1016/j.cjche.2021.07.007
Fuchen Wang, Guangsuo Yu, Haifeng Liu, Weifeng Li, Qinghua Guo, Jianliang Xu, Yan Gong, Hui Zhao, Haifeng Lu, Zhongjie Shen
收稿日期:
2021-02-06
修回日期:
2021-07-11
出版日期:
2021-07-28
发布日期:
2021-09-30
通讯作者:
Fuchen Wang
基金资助:
Fuchen Wang, Guangsuo Yu, Haifeng Liu, Weifeng Li, Qinghua Guo, Jianliang Xu, Yan Gong, Hui Zhao, Haifeng Lu, Zhongjie Shen
Received:
2021-02-06
Revised:
2021-07-11
Online:
2021-07-28
Published:
2021-09-30
Contact:
Fuchen Wang
Supported by:
摘要: Opposed multi-burner (OMB) gasification technology is the first large-scale gasification technology developed in China with completely independent intellectual property rights. It has been widely used around the world, involving synthetic ammonia, methanol, ethylene glycol, coal liquefaction, hydrogen production and other fields. This paper summarizes the research and development process of OMB gasification technology from the perspective of the cold model experiment and process simulation, pilot-scale study and industrial demonstration. The latest progress of fundamental research in nozzle atomization and dispersion, mixing enhancement of impinging flow, multiscale reaction of different carbonaceous feedstocks, spectral characteristic of impinging flame and particle characteristics inside gasifier, and comprehensive gasification model are reviewed. The latest industrial application progress of ultra-large-scale OMB gasifier and radiant syngas cooler (RSC) combined with quenching chamber OMB gasifier are introduced, and the prospects for the future technical development are proposed as well.
Fuchen Wang, Guangsuo Yu, Haifeng Liu, Weifeng Li, Qinghua Guo, Jianliang Xu, Yan Gong, Hui Zhao, Haifeng Lu, Zhongjie Shen. Opposed multi-burner gasification technology: Recent process of fundamental research and industrial application[J]. 中国化学工程学报, 2021, 35(7): 124-142.
Fuchen Wang, Guangsuo Yu, Haifeng Liu, Weifeng Li, Qinghua Guo, Jianliang Xu, Yan Gong, Hui Zhao, Haifeng Lu, Zhongjie Shen. Opposed multi-burner gasification technology: Recent process of fundamental research and industrial application[J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 124-142.
[1] C. Higman, GSTC global syngas database:Global Syngas Technologies Conference, Austin, USA, 2019. [2] J. Li, S.H. Fu, X.H. Jiang, Summary on application technology of Texaco coalwater slurry pressurized gasification unit, Chem. Fertil. Des. 34(5) (1996) 56-58. (in Chinese) [3] W.D. Jiang, B.Q. Han, Texaco coal slurry gasification technology and analysis of unit operation, Coal. Chem. Ind. 2(1997) 18-26. (in Chinese) [4] X.B. Wang, Discussion on operation status and problems of Texaco coal gasification unit, Gas Heat 17(6) (1997) 6-9. (in Chinese) [5] X.B. Wang, Operation status and fault analysis of Texaco coal gasification unit, J. Chem. Fertil. Ind. 25(4) (1998) 22-26. (in Chinese) [6] X.B. Wang, Discussion on firebrick of Texaco coal gasifier, Gas Heat 28(6) (1998) 9-12. (in Chinese) [7] B. Xu, Discussion on operation problems of Texaco coal gasification unit, Coal. Chem. Eng. (4) (1999) 34-37, 40. (in Chinese) [8] X.B. Wang, Discussion on perfection of Texaco coal gasification technology, J. Chem. Fertil. Ind. 26(4) (1999) 53-55. (in Chinese) [9] X. Gong, J.G. Yu, K.J. Xiao, F.C. Wang, C.D. Shen, Z.H. Yu, Cold flow field test of Texaco gasifier, J. East China Univ. Sci. Technol. 19(2) (1993) 128-133. (in Chinese) [10] S.F. Fu, X. Gong, C.D. Shen, K.J. Xiao, J.G. Yu, Z.H. Yu, Cold residence time distribution test of Texaco gasifier (I), J. East China Univ. Sci. Technol. 19(2) (1993) 133-138. (in Chinese) [11] X. Gong, J.G. Yu, F.C. Wang, Y. He, Z.H. Yu, C.D. Shen, Study on cold flow field and residence time distribution of Texaco gasifier, J. Combust. Sci. Technol. 32(2) (1994) 189-195. (in Chinese) [12] K.J. Xiao, Z.H. Yu, C.D. Shen, Mathematical simulation of cold flow field in Texaco gasifier, Acta Petro Sin:Pet Process Section 8(2) (1992) 94-102. (in Chinese) [13] Z.H. Yu, C.D. Shen, F.C. Wang, J.G. Yu, K.J. Xiao, X. Gong, Three-region model for gasification process in coal-slurry gasifier, J. Combust. Sci. Technol. 21(1) (1993) 90-95. (in Chinese) [14] Z.H. Yu, C.D. Shen, F.C. Wang, X. Gong, J.G. Yu, K.J. Xiao, Mathematical model of coal-water slurry gasifier, J. Combust. Sci. Technol. 21(2) (1993) 191-198. (in Chinese) [15] F.C. Wang, Study on the process of entrained-flow gasification, Ph. D. Thesis, East China Univ. Sci. Technol., Shanghai, China, 1995. (in Chinese) [16] F.C. Wang, X. Gong, G.S. Yu, T. Wu, Z.H. Yu, Investigation of macro-mixing process for jet-entrained gasifier I. Cold model concentration distribution, CIESC J. 48(2) (1997) 193-199. (in Chinese) [17] F.C. Wang, X. Gong, G.S. Yu, T. Wu, Z.H. Yu, Investigation of macro-mixing process for jet-entrained gasifier II. Cold model residence time distribution, CIESC J.48(2) (1997) 200-207. (in Chinese) [18] F.C. Wang, T. Wu, J.G. Yu, X. Gong, Z.H. Yu, Macro-mixing process investigation for jet-entrained gasifier III. Process analysis and simulation, CIESC J. 48(2) (1997) 336-346. (in Chinese) [19] H. Pan, H. Tian, S. Yu, Study on the separation of methanol-DMC azeotrope by extrative distillation, J. East China Univ. Sci. Technol. 24(4) (1998) 385-388. (in Chinese) [20] Z.G. Xu, Z.B. Zhu, C.F. Zhang, Two dimensional heterogeneous model for radial flow ammonia synthesis reactors considering radial velocity, J. East China Univ. Sci. Technol. 24(6) (1998) 627-631. (in Chinese) [21] W. He, Y. Pan, B. Zhu Analysis of conversion and yield for multiple reaction of vinyl acetate synthesis, J. East China Univ. Sci. Technol. 25(3) (1999) 228-232. (in Chinese) [22] H.F. Liu, H. Liu, X. Gong, F.C. Wang, Z.H. Yu, Radial velocity of wide spaced impinging streams, J. East China Univ. Sci. Technol. 26(2) (2000) 168-172. (in Chinese) [23] X. Gong, H.F. Liu, F.C. Wang, G.S. Yu, Z.H. Yu, New type coal water slurry gasifier, Energy Conser. Environ. Prot. 6(2001) 15-17. (in Chinese) [24] L.J. Ji, H.F. Liu, F.C. Wang, Z.H. Yu, Residence time distribution no impinging stream reactor, J. East China Univ. Sci. Technol. 32(1) (2006) 24-27. (in Chinese) [25] F.C. Wang, H.F. Liu, X. Gong, G.S. Yu, Z.H. Yu, Mathematical simulation for coal water slurry gasification system, J. Combust. Sci. Technol. 29(1) (2001) 33-38. (in Chinese) [26] W. Han, D.Z. Zhao, Q.R. Zhu, H.G. Lu, Z.Q. Sun, G.S. Yu, H.F. Liu, Z.H. Yu, Development of a new type (multi-nozzle opposed) coal-water slurry gasifier, J. Chem. Fertil. Ind. 28(3) (2001) 18-20. (in Chinese) [27] X. Gong, F.C. Wang, H.F. Liu, G.S. Yu, Z.H. Yu, A new type of imping streams entrained bed gasfier used for coal-water slurry gasification process, Gas Turb. Technol. 15(2) (2002) 23-24. (in Chinese) [28] G.S Yu, Xin, Gong, H.F. Liu, Y.F. Wang, F.C. Wang, Z.H. Yu, Multi-nozzle opposed coal water slurry gasification technology, Mod. Chem. Ind. 24(10) (2004) 46-49. (in Chinese) [29] F.C. Wang, X. Gong, H.F. Liu, G.S. Yu, Z.J. Zhou, Z.H. Yu, K.R. Tan, Process analysis and simulation of shell pulverized coal gasifier, Large Scale Nitro. Fertil. Ind. 25(6) (2002) 381-384. (in Chinese) [30] Y.Y. Zhao, F. Chen, X. Gong, Z.H. Yu, The solid loading ratio in dense phase pneumatic conveying of pulverous coal, J. East China Univ. Sci. Technol. 28(3) (2002) 235-237. (in Chinese) [31] Y.Y. Zhao, H.F. Liu, X. Gong, Z.H. Yu, Wavelet analysis on the pressure drop signals of dense phase pneumatic conveying of the pulverized coal in the horizontal pipe, J. East China Univ. Sci. Technol. 29(1) (2003) 30-32. (in Chinese) [32] X. Gong, X.L. Guo, Z.H. Dai, Z.H. Yu, F. Han, R.T. Zhao, C.L. Lv, W.X. Lu, Newtype gasification technology of pressurized entrained-flow for pulverized coal, Mod. Chem. Ind. 25(3) (2005) 51-52. (in Chinese) [33] X. Gong, X.L. Guo, Z.H. Dai, Z.H. Yu, R.T. Zhao, The independently innovative gasification technology of perssurized entrained-flow for pulverized coal, Large Scale Nitro. Fertil. Ind. 28(3) (2005) 154-157. (in Chinese) [34] X. Gong, X.L. Guo, Z.H. Dai, Z.H. Yu, B.G. Guo, R.T. Zhao, K.N. He, K.R. Tan, New technology for synthesis gas production from pulverized coal by pressurized gasification in an airstream bed, Coal. Chem. Ind. 6(2006) 5-8. (in Chinese) [35] X.L. Guo, Q.F. Liang, Z.H. Dai, H.F. Liu, X. Gong, Z.H. Yu, W.X. Lu, L. Li, X.F. Zhang, B.G. Guo, Technical development and industrial demonstration of multi-nozzle opposed pulverized coal gasification, Proceedings of 2008 China Metal Society Annual Conference on non-blast furnace ironmaking, Yanji, 2008. (in Chinese) [36] Z.H. Yu, G.S. Yu, Z.J. Zhou, Z.H. Dai, H.F. Liu, X. Gong, F.C. Wang, Y.F. Wang, Q.R. Zhu, Z.Q. Sun, M. Zhu, Y.K. Sun, M.X. Sun, B.B. Lin, F. Lu, Research and development and industrial application of multi-nozzle opposed CWS gasification technology, Sci. Technol. Ind. China (2) (2006) 28-31. (in Chinese) [37] F.C. Wang, G.S. Yu, X. Gong, H.F. Liu, Y.F. Wang, Z.J. Zhou, X.L. Chen, X.L Guo, Z. H. Dai, Z.H. Yu, Research and demonstration of multi-nozzle opposed coal gasification technology, Appl. Chem. Ind. 35(1) (2006) 119-132. (in Chinese) [38] F.C. Wang, Z.J. Zhou, Z.H. Dai, X. Gong, G.S. Yu, H.F. Liu, Y.F. Wang, Z.H. Yu, Development and demonstration plant operation of an opposed multi-burner coal-water slurry gasification technology, Front. Energy Power Eng. China 1(3) (2007) 251-258. (in Chinese) [39] F.C. Wang, Review for research of flow, mixing and reaction process in entrained flow coal gasifier, J. Fuel Chem. Technol. 41(7) (2013) 769-786. (in Chinese) [40] H. Zhao, H.F. Liu, J.L. Xu, W.F. Li, W. Cheng, Breakup and atomization of a round coal water slurry jet by an annular air jet, Chem. Eng. Sci. 78(2012) 63-74. [41] H. Zhao, Y.B. Hou, H.F. Liu, X.S. Tian, J.L. Xu, W.F. Li, Y. Liu, F.Y. Wu, J. Zhang, K. F. Lin, Influence of rheological properties on air-blast atomization of coal water slurry, J. Non-Newton. Fluid Mech. 211(2014) 1-15. [42] H. Zhao, H.F. Liu, J.L. Xu, W.F. Li, Secondary breakup of coal water slurry drops, Phys. Fluids 23(11) (2011) 113101. [43] S. Tavangar, S.H. Hashemabadi, A. Saberimoghadam, CFD simulation for secondary breakup of coal-water slurry drops using OpenFOAM, Fuel Process. Technol. 132(2015) 153-163. [44] H. Zhao, H.F. Liu, J.L. Xu, W.F. Li, K.F. Lin, Inhomogeneity in breakup of suspensions, Phys. Fluids 27(6) (2015) 063303. [45] W. Mathues, C. McIlroy, O.G. Harlen, C. Clasen, Capillary breakup of suspensions near pinch-off, Phys. Fluids 27(9) (2015) 093301. [46] J. Zou, F.Y. Lin, C. Ji, Capillary breakup of armored liquid filaments, Phys. Fluids 29(6) (2017) 062103. [47] C.C. Fang, J.L. Xu, H. Zhao, W.F. Li, H.F. Liu, Influences of the wall thickness on the granular dispersion in a dense gas-solid coaxial jet, Int. J. Multiph. Flow 81(2016) 20-26. [48] C.C. Fang, J.L. Xu, H. Zhao, W.F. Li, H.F. Liu, Experimental investigation on particle entrainment behaviors near a nozzle in gas-particle coaxial jets, Powder Technol. 286(2015) 55-63. [49] W.F. Li, G.F. Huang, G.Y. Tu, H.F. Liu, F.C. Wang, Experimental study of oscillation of axisymmetric turbulent opposed jets with modulated airflow, AIChE J. 59(12) (2013) 4828-4838. [50] W.F. Li, G.F. Huang, G.Y. Tu, H.F. Liu, F.C. Wang, Experimental study of planar opposed jets with acoustic excitation, Phys. Fluids 25(1) (2013) 014108. [51] W.F. Li, K.J. Du, G.S. Yu, H.F. Liu, F.C. Wang, Experimental study of flow regimes in three-dimensional confined impinging jets reactor, AIChE J. 60(8) (2014) 3033-3045. [52] G.Y. Tu, W.F. Li, K.J. Du, F.C. Wang, Experimental investigation of deflecting oscillation in T-jets reactor, Chem. Eng. Sci. 116(2014) 734-744. [53] J.W. Zhang, T.L. Yao, W.F. Li, M. El Hassan, X.L. Xu, H.F. Liu, F.C. Wang, Trapping region of impinging jets in a cross-shaped channel, AIChE J. 66(2) (2020) e16822. [54] Z.H. Shi, W.F. Li, Y. Wang, H.F. Liu, F.C. Wang, Study on liquid-like behaviors of dense granular impinging jets, AIChE J. 65(1) (2019) 49-63. [55] H.K. Liu, Z.H. Shi, W.F. Li, H.F. Liu, F.C. Wang, Study on oscillation of granular sheet from granular jet impingement, Chem. Eng. J. 368(2019) 175-185. [56] Z.H. Shi, W.F. Li, H.F. Liu, F.C. Wang, Liquid-like wave structure on granular film from granular jet impact, AIChE J. 63(8) (2017) 3276-3285. [57] Z.H. Shi, W.F. Li, Y. Wang, H.F. Liu, F.C. Wang, DEM study of liquid-like granular film from granular jet impact, Powder Technol. 336(2018) 199-209. [58] X. Cheng, G. Varas, D. Citron, H.M. Jaeger, S.R. Nagel, Collective behavior in a granular jet:Emergence of a liquid with zero surface tension, Phys. Rev. Lett. 99(18) (2007) 188001. [59] J.S. Gao, Research on gasification reactivity of different coals under high temperature and high pressure, Acceptance report for the National Basic Research Program of China (2004CB217704), China, 2009. (in Chinese) [60] S.Y. Wu, J. Gu, X. Zhang, Y.Q. Wu, J.S. Gao, Variation of carbon crystalline structures and CO2 gasification reactivity of shenfu coal chars at elevated temperatures, Energy Fuels 22(1) (2008) 199-206. [61] J. Gu, S.Y. Wu, Y.Q. Wu, Y. Li, J.S. Gao, Differences in gasification behaviors and related properties between entrained gasifier fly ash and coal char, Energy Fuels 22(6) (2008) 4029-4033. [62] J. Gu, S. Wu, X. Zhang, Y. Wu, J. Gao, CO2-gasification reactivity of different carbonaceous materials at elevated temperatures, Energy Sources Part A:Recover. Util. Environ. Eff. 31(3) (2009) 232-243. [63] Y.Q. Wu, S. Huang, S.Y. Wu, J.S. Gao, Investigations on CS2-solube fractions and gasification reactivity of liquid-phase carbonization cokes, Energy Fuels 24(10) (2010) 5596-5601. [64] Y.Q. Wu, S.Y. Wu, S. Huang, J.S. Gao, Physicochemical properties and structural evolutions of gas-phase carbonization chars at high temperatures, Fuel Process. Technol. 91(11) (2010) 1662-1669. [65] Z.J. Zhou, Q.J. Hu, X. Liu, G.S. Yu, F.C. Wang, Effect of iron species and calcium hydroxide on high-sulfur petroleum coke CO2 gasification, Energy Fuels 26(3) (2012) 1489-1495. [66] X.L. Zhan, Z.J. Zhou, F.C. Wang, Catalytic effect of black liquor on the gasification reactivity of petroleum coke, Appl. Energy 87(5) (2010) 1710-1715. [67] J.H. Zou, B.L. Yang, K.F. Gong, S.Y. Wu, Z.J. Zhou, F.C. Wang, Z.H. Yu, Effect of mechanochemical treatment on petroleum coke-CO2 gasification, Fuel 87(6) (2008) 622-627. [68] X. Liu, Z.J. Zhou, B.S. Zhang, L. Chen, F.C. Wang, Effect of microwave treatment on structural changes and gasification reactivity of petroleum coke, Ind. Eng. Chem. Res. 50(15) (2011) 9063-9068. [69] V. Krishnamoorthy, A.H. Tchapda, S.V. Pisupati, A study on fragmentation behavior, inorganic melt phase formation, and carbon loss during high temperature gasification of mineral matter rich fraction of Pittsburgh No. 8 coal, Fuel 208(2017) 247-259. [70] L. Ding, Z.J. Zhou, Q.H. Guo, Y.F. Wang, G.S. Yu, In situ analysis and mechanism study of char-ash/slag transition in pulverized coal gasification, Energy Fuels 29(6) (2015) 3532-3544. [71] M. Liu, Z.J. Shen, Q.F. Liang, J.L. Xu, H.F. Liu, New slag-char interaction mode in the later stage of high ash content coal char gasification, Energy Fuels 32(11) (2018) 11335-11343. [72] M. Liu, Z.J. Shen, Q.F. Liang, J.L. Xu, H.F. Liu, Morphological evolution of a single char particle with a low ash fusion temperature during the whole gasification process, Energy Fuels 32(2) (2018) 1550-1557. [73] J. Wang, L.X. Kong, J. Bai, H.Z. Li, Z.Q. Bai, X. Li, W. Li, The role of residual char on ash flow behavior, Part 1:The effect of graphitization degree of residual char on ash fusibility, Fuel 234(2018) 1173-1180. [74] J. Wang, L.X. Kong, J. Bai, H.L. Zhao, S. Guhl, H.Z. Li, Z.Q. Bai, B. Meyer, W. Li, The role of residual char on ash flow behavior, Part 2:Effect of SiO2/Al2O3 on ash fusibility and carbothermal reaction, Fuel 255(2019) 115846. [75] J. Wang, L.X. Kong, J. Bai, H.L. Zhao, K. Xue, X.L. Zhu, S. Guhl, M. Reinmöller, H. Z. Li, Z.Q. Bai, B. Meyer, W. Li, The role of residual char on ash flow behavior, Part 3:Effect of Fe2O3 content on ash fusibility and carbothermal reaction, Fuel 280(2020) 118705. [76] M. Liu, Z.J. Shen, Q.F. Liang, J.L. Xu, H.F. Liu, In situ experimental study of CO2 gasification of petcoke particles on molten slag surface at high temperature, Fuel 285(2021) 119158. [77] Z.J. Shen, Q.F. Liang, J.L. Xu, B.B. Zhang, D. Han, H.F. Liu, In situ experimental study on the combustion characteristics of captured chars on the molten slag surface, Combust. Flame 166(2016) 333-342. [78] M. Liu, Z.H. Zhou, Z.J. Shen, Q.F. Liang, J.L. Xu, H.F. Liu, Comparison of HTSM and TGA experiments of gasification characteristics of different coal chars and petcoke, Energy Fuels 33(4) (2019) 3057-3067. [79] Z.J. Shen, Q.F. Liang, J.L. Xu, H.F. Liu, K.F. Lin, Study on the combustion characteristics of a two-dimensional particle group for coal char and petroleum coke particles, Fuel 253(2019) 501-511. [80] M. Liu, Z.J. Shen, Q.F. Liang, H.F. Liu, Particle fluctuating motions induced by gas-solid phase reaction, Chem. Eng. J. 388(2020) 124348. [81] J.L. Xu, Q.F. Liang, Z.H. Dai, H.F. Liu, Comprehensive model with time limited wall reaction for entrained flow gasifier, Fuel 184(2016) 118-127. [82] Z.J. Shen, Q.F. Liang, J.L. Xu, B.B. Zhang, H.F. Liu, In-situ experimental study of CO2 gasification of char particles on molten slag surface, Fuel 160(2015) 560-567. [83] Z.J. Shen, Q.F. Liang, J.L. Xu, H.F. Liu, K.F. Lin, Study on the fragmentation behaviors of deposited particles on the molten slag surface and their effects on gasification for different coal ranks and petroleum coke, Energy Fuels 32(9) (2018) 9243-9254. [84] Z.J. Shen, Q.F. Liang, J.L. Xu, H.F. Liu, In situ study on the formation mechanism of bubbles during the reaction of captured chars on molten slag surface, Int. J. Heat Mass Transf. 95(2016) 517-524. [85] C.H. Hu, Y. Gong, Q.H. Guo, Y.F. Wang, G.S. Yu, Experimental study on the spectroscopy of opposed impinging diesel flames based on a bench-scale gasifier, Energy Fuels 31(4) (2017) 4469-4478. [86] Q. Zhang, Y. Gong, Q.H. Guo, X.D. Song, G.S. Yu, Experimental study on CH* chemiluminescence characteristics of impinging flames in an opposed multiburner gasifier, AIChE J. 63(6) (2017) 2007-2018. [87] X.D. Song, Q.H. Guo, C.H. Hu, Y. Gong, G.S. Yu, Optical experimental study on the characteristics of impinging coal-water slurry flame in an opposed multiburner gasifier, Fuel 188(2017) 132-139. [88] T. Zhang, Q.H. Guo, Q.F. Liang, Z.H. Dai, G.S. Yu, Distribution characteristics of OH*, CH*, and C2* luminescence in CH4/O2 co-flow diffusion flames, Energy Fuels 26(9) (2012) 5503-5508. [89] H.W. Zhu, C.H. Hu, Q.H. Guo, Y. Gong, G.S. Yu, Investigation on chemiluminescence and structure characteristics in CH4/O2 diffusion flames, Exp. Therm. Fluid Sci. 102(2019) 595-602. [90] L. He, Q.H. Guo, Y. Gong, F.C. Wang, G.S. Yu, Investigation of OH* chemiluminescence and heat release in laminar methane-oxygen co-flow diffusion flames, Combust. Flame 201(2019) 12-22. [91] Y. Gong, G.S. Yu, Q.H. Guo, Z.J. Zhou, F.C. Wang, Y.D. Liu, Experimental study on particle characteristics in an opposed multi-burner gasifier, Chem. Eng. Sci. 117(2014) 93-106. [92] Y. Gong, Q. Zhang, Q.H. Guo, Z.C. Xue, F.C. Wang, G.S. Yu, Vision-based investigation on the ash/slag particle deposition characteristics in an impinging entrained-flow gasifier, Appl. Energy 206(2017) 1184-1193. [93] Z.C. Xue, Q.H. Guo, Y. Gong, X.X. Wu, F.C. Wang, G.S. Yu, Detailed deposition characteristics around burner plane in an impinging entrained-flow coal gasifier, Chem. Eng. Sci. 198(2019) 85-97. [94] Z.C. Xue, Q.H. Guo, Y. Gong, Y.F. Wang, G.S. Yu, In-situ atomization and flame characteristics of coal water slurry in an impinging entrained-flow gasifier, Chem. Eng. Sci. 190(2018) 248-259. [95] C. Li, Z.H. Dai, Z.H. Sun, F.C. Wang, Modeling of an opposed multiburner gasifier with a reduced-order model, Ind. Eng. Chem. Res. 52(16) (2013) 5825-5834. [96] S. Halama, H. Spliethoff, Numerical simulation of entrained flow gasification:Reaction kinetics and char structure evolution, Fuel Process. Technol. 138(2015) 314-324. [97] J.L. Xu, Q.F. Liang, Z.H. Dai, H.F. Liu, The influence of swirling flows on pulverized coal gasifiers using the comprehensive gasification model, Fuel Process. Technol. 172(2018) 142-154. [98] Z.H. Sun, Z.H. Dai, Z.J. Zhou, Q.H. Guo, G.S. Yu, Numerical simulation of industrial opposed multiburner coal-water slurry entrained flow gasifier, Ind. Eng. Chem. Res. 51(6) (2012) 2560-2569. [99] J.L. Xu, Z.H. Dai, H.F. Liu, L.Y. Guo, F. Sun, Modeling of multiphase reaction and slag flow in single-burner coal water slurry gasifier, Chem. Eng. Sci. 162(2017) 41-52. [100] J.L. Xu, H. Zhao, Z.H. Dai, H.F. Liu, F.C. Wang, Influences of height-diameter ratio on multiphase reaction flow of single-burner coal water slurry gasifier, Chem. Eng. China 44(4) (2016) 68-73. (in Chinese) [101] F.C. Wang, Coal gasification technologies in China:Review and prospect, Clean Coal Technol. 27(1) (2021) 1-50. (in Chinese) |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 357
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 268
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||