[1] C. Higman, GSTC global syngas database:Global Syngas Technologies Conference, Austin, USA, 2019. [2] J. Li, S.H. Fu, X.H. Jiang, Summary on application technology of Texaco coalwater slurry pressurized gasification unit, Chem. Fertil. Des. 34(5) (1996) 56-58. (in Chinese) [3] W.D. Jiang, B.Q. Han, Texaco coal slurry gasification technology and analysis of unit operation, Coal. Chem. Ind. 2(1997) 18-26. (in Chinese) [4] X.B. Wang, Discussion on operation status and problems of Texaco coal gasification unit, Gas Heat 17(6) (1997) 6-9. (in Chinese) [5] X.B. Wang, Operation status and fault analysis of Texaco coal gasification unit, J. Chem. Fertil. Ind. 25(4) (1998) 22-26. (in Chinese) [6] X.B. Wang, Discussion on firebrick of Texaco coal gasifier, Gas Heat 28(6) (1998) 9-12. (in Chinese) [7] B. Xu, Discussion on operation problems of Texaco coal gasification unit, Coal. Chem. Eng. (4) (1999) 34-37, 40. (in Chinese) [8] X.B. Wang, Discussion on perfection of Texaco coal gasification technology, J. Chem. Fertil. Ind. 26(4) (1999) 53-55. (in Chinese) [9] X. Gong, J.G. Yu, K.J. Xiao, F.C. Wang, C.D. Shen, Z.H. Yu, Cold flow field test of Texaco gasifier, J. East China Univ. Sci. Technol. 19(2) (1993) 128-133. (in Chinese) [10] S.F. Fu, X. Gong, C.D. Shen, K.J. Xiao, J.G. Yu, Z.H. Yu, Cold residence time distribution test of Texaco gasifier (I), J. East China Univ. Sci. Technol. 19(2) (1993) 133-138. (in Chinese) [11] X. Gong, J.G. Yu, F.C. Wang, Y. He, Z.H. Yu, C.D. Shen, Study on cold flow field and residence time distribution of Texaco gasifier, J. Combust. Sci. Technol. 32(2) (1994) 189-195. (in Chinese) [12] K.J. Xiao, Z.H. Yu, C.D. Shen, Mathematical simulation of cold flow field in Texaco gasifier, Acta Petro Sin:Pet Process Section 8(2) (1992) 94-102. (in Chinese) [13] Z.H. Yu, C.D. Shen, F.C. Wang, J.G. Yu, K.J. Xiao, X. Gong, Three-region model for gasification process in coal-slurry gasifier, J. Combust. Sci. Technol. 21(1) (1993) 90-95. (in Chinese) [14] Z.H. Yu, C.D. Shen, F.C. Wang, X. Gong, J.G. Yu, K.J. Xiao, Mathematical model of coal-water slurry gasifier, J. Combust. Sci. Technol. 21(2) (1993) 191-198. (in Chinese) [15] F.C. Wang, Study on the process of entrained-flow gasification, Ph. D. Thesis, East China Univ. Sci. Technol., Shanghai, China, 1995. (in Chinese) [16] F.C. Wang, X. Gong, G.S. Yu, T. Wu, Z.H. Yu, Investigation of macro-mixing process for jet-entrained gasifier I. Cold model concentration distribution, CIESC J. 48(2) (1997) 193-199. (in Chinese) [17] F.C. Wang, X. Gong, G.S. Yu, T. Wu, Z.H. Yu, Investigation of macro-mixing process for jet-entrained gasifier II. Cold model residence time distribution, CIESC J.48(2) (1997) 200-207. (in Chinese) [18] F.C. Wang, T. Wu, J.G. Yu, X. Gong, Z.H. Yu, Macro-mixing process investigation for jet-entrained gasifier III. Process analysis and simulation, CIESC J. 48(2) (1997) 336-346. (in Chinese) [19] H. Pan, H. Tian, S. Yu, Study on the separation of methanol-DMC azeotrope by extrative distillation, J. East China Univ. Sci. Technol. 24(4) (1998) 385-388. (in Chinese) [20] Z.G. Xu, Z.B. Zhu, C.F. Zhang, Two dimensional heterogeneous model for radial flow ammonia synthesis reactors considering radial velocity, J. East China Univ. Sci. Technol. 24(6) (1998) 627-631. (in Chinese) [21] W. He, Y. Pan, B. Zhu Analysis of conversion and yield for multiple reaction of vinyl acetate synthesis, J. East China Univ. Sci. Technol. 25(3) (1999) 228-232. (in Chinese) [22] H.F. Liu, H. Liu, X. Gong, F.C. Wang, Z.H. Yu, Radial velocity of wide spaced impinging streams, J. East China Univ. Sci. Technol. 26(2) (2000) 168-172. (in Chinese) [23] X. Gong, H.F. Liu, F.C. Wang, G.S. Yu, Z.H. Yu, New type coal water slurry gasifier, Energy Conser. Environ. Prot. 6(2001) 15-17. (in Chinese) [24] L.J. Ji, H.F. Liu, F.C. Wang, Z.H. Yu, Residence time distribution no impinging stream reactor, J. East China Univ. Sci. Technol. 32(1) (2006) 24-27. (in Chinese) [25] F.C. Wang, H.F. Liu, X. Gong, G.S. Yu, Z.H. Yu, Mathematical simulation for coal water slurry gasification system, J. Combust. Sci. Technol. 29(1) (2001) 33-38. (in Chinese) [26] W. Han, D.Z. Zhao, Q.R. Zhu, H.G. Lu, Z.Q. Sun, G.S. Yu, H.F. Liu, Z.H. Yu, Development of a new type (multi-nozzle opposed) coal-water slurry gasifier, J. Chem. Fertil. Ind. 28(3) (2001) 18-20. (in Chinese) [27] X. Gong, F.C. Wang, H.F. Liu, G.S. Yu, Z.H. Yu, A new type of imping streams entrained bed gasfier used for coal-water slurry gasification process, Gas Turb. Technol. 15(2) (2002) 23-24. (in Chinese) [28] G.S Yu, Xin, Gong, H.F. Liu, Y.F. Wang, F.C. Wang, Z.H. Yu, Multi-nozzle opposed coal water slurry gasification technology, Mod. Chem. Ind. 24(10) (2004) 46-49. (in Chinese) [29] F.C. Wang, X. Gong, H.F. Liu, G.S. Yu, Z.J. Zhou, Z.H. Yu, K.R. Tan, Process analysis and simulation of shell pulverized coal gasifier, Large Scale Nitro. Fertil. Ind. 25(6) (2002) 381-384. (in Chinese) [30] Y.Y. Zhao, F. Chen, X. Gong, Z.H. Yu, The solid loading ratio in dense phase pneumatic conveying of pulverous coal, J. East China Univ. Sci. Technol. 28(3) (2002) 235-237. (in Chinese) [31] Y.Y. Zhao, H.F. Liu, X. Gong, Z.H. Yu, Wavelet analysis on the pressure drop signals of dense phase pneumatic conveying of the pulverized coal in the horizontal pipe, J. East China Univ. Sci. Technol. 29(1) (2003) 30-32. (in Chinese) [32] X. Gong, X.L. Guo, Z.H. Dai, Z.H. Yu, F. Han, R.T. Zhao, C.L. Lv, W.X. Lu, Newtype gasification technology of pressurized entrained-flow for pulverized coal, Mod. Chem. Ind. 25(3) (2005) 51-52. (in Chinese) [33] X. Gong, X.L. Guo, Z.H. Dai, Z.H. Yu, R.T. Zhao, The independently innovative gasification technology of perssurized entrained-flow for pulverized coal, Large Scale Nitro. Fertil. Ind. 28(3) (2005) 154-157. (in Chinese) [34] X. Gong, X.L. Guo, Z.H. Dai, Z.H. Yu, B.G. Guo, R.T. Zhao, K.N. He, K.R. Tan, New technology for synthesis gas production from pulverized coal by pressurized gasification in an airstream bed, Coal. Chem. Ind. 6(2006) 5-8. (in Chinese) [35] X.L. Guo, Q.F. Liang, Z.H. Dai, H.F. Liu, X. Gong, Z.H. Yu, W.X. Lu, L. Li, X.F. Zhang, B.G. Guo, Technical development and industrial demonstration of multi-nozzle opposed pulverized coal gasification, Proceedings of 2008 China Metal Society Annual Conference on non-blast furnace ironmaking, Yanji, 2008. (in Chinese) [36] Z.H. Yu, G.S. Yu, Z.J. Zhou, Z.H. Dai, H.F. Liu, X. Gong, F.C. Wang, Y.F. Wang, Q.R. Zhu, Z.Q. Sun, M. Zhu, Y.K. Sun, M.X. Sun, B.B. Lin, F. Lu, Research and development and industrial application of multi-nozzle opposed CWS gasification technology, Sci. Technol. Ind. China (2) (2006) 28-31. (in Chinese) [37] F.C. Wang, G.S. Yu, X. Gong, H.F. Liu, Y.F. Wang, Z.J. Zhou, X.L. Chen, X.L Guo, Z. H. Dai, Z.H. Yu, Research and demonstration of multi-nozzle opposed coal gasification technology, Appl. Chem. Ind. 35(1) (2006) 119-132. (in Chinese) [38] F.C. Wang, Z.J. Zhou, Z.H. Dai, X. Gong, G.S. Yu, H.F. Liu, Y.F. Wang, Z.H. Yu, Development and demonstration plant operation of an opposed multi-burner coal-water slurry gasification technology, Front. Energy Power Eng. China 1(3) (2007) 251-258. (in Chinese) [39] F.C. Wang, Review for research of flow, mixing and reaction process in entrained flow coal gasifier, J. Fuel Chem. Technol. 41(7) (2013) 769-786. (in Chinese) [40] H. Zhao, H.F. Liu, J.L. Xu, W.F. Li, W. Cheng, Breakup and atomization of a round coal water slurry jet by an annular air jet, Chem. Eng. Sci. 78(2012) 63-74. [41] H. Zhao, Y.B. Hou, H.F. Liu, X.S. Tian, J.L. Xu, W.F. Li, Y. Liu, F.Y. Wu, J. Zhang, K. F. Lin, Influence of rheological properties on air-blast atomization of coal water slurry, J. Non-Newton. Fluid Mech. 211(2014) 1-15. [42] H. Zhao, H.F. Liu, J.L. Xu, W.F. Li, Secondary breakup of coal water slurry drops, Phys. Fluids 23(11) (2011) 113101. [43] S. Tavangar, S.H. Hashemabadi, A. Saberimoghadam, CFD simulation for secondary breakup of coal-water slurry drops using OpenFOAM, Fuel Process. Technol. 132(2015) 153-163. [44] H. Zhao, H.F. Liu, J.L. Xu, W.F. Li, K.F. Lin, Inhomogeneity in breakup of suspensions, Phys. Fluids 27(6) (2015) 063303. [45] W. Mathues, C. McIlroy, O.G. Harlen, C. Clasen, Capillary breakup of suspensions near pinch-off, Phys. Fluids 27(9) (2015) 093301. [46] J. Zou, F.Y. Lin, C. Ji, Capillary breakup of armored liquid filaments, Phys. Fluids 29(6) (2017) 062103. [47] C.C. Fang, J.L. Xu, H. Zhao, W.F. Li, H.F. Liu, Influences of the wall thickness on the granular dispersion in a dense gas-solid coaxial jet, Int. J. Multiph. Flow 81(2016) 20-26. [48] C.C. Fang, J.L. Xu, H. Zhao, W.F. Li, H.F. Liu, Experimental investigation on particle entrainment behaviors near a nozzle in gas-particle coaxial jets, Powder Technol. 286(2015) 55-63. [49] W.F. Li, G.F. Huang, G.Y. Tu, H.F. Liu, F.C. Wang, Experimental study of oscillation of axisymmetric turbulent opposed jets with modulated airflow, AIChE J. 59(12) (2013) 4828-4838. [50] W.F. Li, G.F. Huang, G.Y. Tu, H.F. Liu, F.C. Wang, Experimental study of planar opposed jets with acoustic excitation, Phys. Fluids 25(1) (2013) 014108. [51] W.F. Li, K.J. Du, G.S. Yu, H.F. Liu, F.C. Wang, Experimental study of flow regimes in three-dimensional confined impinging jets reactor, AIChE J. 60(8) (2014) 3033-3045. [52] G.Y. Tu, W.F. Li, K.J. Du, F.C. Wang, Experimental investigation of deflecting oscillation in T-jets reactor, Chem. Eng. Sci. 116(2014) 734-744. [53] J.W. Zhang, T.L. Yao, W.F. Li, M. El Hassan, X.L. Xu, H.F. Liu, F.C. Wang, Trapping region of impinging jets in a cross-shaped channel, AIChE J. 66(2) (2020) e16822. [54] Z.H. Shi, W.F. Li, Y. Wang, H.F. Liu, F.C. Wang, Study on liquid-like behaviors of dense granular impinging jets, AIChE J. 65(1) (2019) 49-63. [55] H.K. Liu, Z.H. Shi, W.F. Li, H.F. Liu, F.C. Wang, Study on oscillation of granular sheet from granular jet impingement, Chem. Eng. J. 368(2019) 175-185. [56] Z.H. Shi, W.F. Li, H.F. Liu, F.C. Wang, Liquid-like wave structure on granular film from granular jet impact, AIChE J. 63(8) (2017) 3276-3285. [57] Z.H. Shi, W.F. Li, Y. Wang, H.F. Liu, F.C. Wang, DEM study of liquid-like granular film from granular jet impact, Powder Technol. 336(2018) 199-209. [58] X. Cheng, G. Varas, D. Citron, H.M. Jaeger, S.R. Nagel, Collective behavior in a granular jet:Emergence of a liquid with zero surface tension, Phys. Rev. Lett. 99(18) (2007) 188001. [59] J.S. Gao, Research on gasification reactivity of different coals under high temperature and high pressure, Acceptance report for the National Basic Research Program of China (2004CB217704), China, 2009. (in Chinese) [60] S.Y. Wu, J. Gu, X. Zhang, Y.Q. Wu, J.S. Gao, Variation of carbon crystalline structures and CO2 gasification reactivity of shenfu coal chars at elevated temperatures, Energy Fuels 22(1) (2008) 199-206. [61] J. Gu, S.Y. Wu, Y.Q. Wu, Y. Li, J.S. Gao, Differences in gasification behaviors and related properties between entrained gasifier fly ash and coal char, Energy Fuels 22(6) (2008) 4029-4033. [62] J. Gu, S. Wu, X. Zhang, Y. Wu, J. Gao, CO2-gasification reactivity of different carbonaceous materials at elevated temperatures, Energy Sources Part A:Recover. Util. Environ. Eff. 31(3) (2009) 232-243. [63] Y.Q. Wu, S. Huang, S.Y. Wu, J.S. Gao, Investigations on CS2-solube fractions and gasification reactivity of liquid-phase carbonization cokes, Energy Fuels 24(10) (2010) 5596-5601. [64] Y.Q. Wu, S.Y. Wu, S. Huang, J.S. Gao, Physicochemical properties and structural evolutions of gas-phase carbonization chars at high temperatures, Fuel Process. Technol. 91(11) (2010) 1662-1669. [65] Z.J. Zhou, Q.J. Hu, X. Liu, G.S. Yu, F.C. Wang, Effect of iron species and calcium hydroxide on high-sulfur petroleum coke CO2 gasification, Energy Fuels 26(3) (2012) 1489-1495. [66] X.L. Zhan, Z.J. Zhou, F.C. Wang, Catalytic effect of black liquor on the gasification reactivity of petroleum coke, Appl. Energy 87(5) (2010) 1710-1715. [67] J.H. Zou, B.L. Yang, K.F. Gong, S.Y. Wu, Z.J. Zhou, F.C. Wang, Z.H. Yu, Effect of mechanochemical treatment on petroleum coke-CO2 gasification, Fuel 87(6) (2008) 622-627. [68] X. Liu, Z.J. Zhou, B.S. Zhang, L. Chen, F.C. Wang, Effect of microwave treatment on structural changes and gasification reactivity of petroleum coke, Ind. Eng. Chem. Res. 50(15) (2011) 9063-9068. [69] V. Krishnamoorthy, A.H. Tchapda, S.V. Pisupati, A study on fragmentation behavior, inorganic melt phase formation, and carbon loss during high temperature gasification of mineral matter rich fraction of Pittsburgh No. 8 coal, Fuel 208(2017) 247-259. [70] L. Ding, Z.J. Zhou, Q.H. Guo, Y.F. Wang, G.S. Yu, In situ analysis and mechanism study of char-ash/slag transition in pulverized coal gasification, Energy Fuels 29(6) (2015) 3532-3544. [71] M. Liu, Z.J. Shen, Q.F. Liang, J.L. Xu, H.F. Liu, New slag-char interaction mode in the later stage of high ash content coal char gasification, Energy Fuels 32(11) (2018) 11335-11343. [72] M. Liu, Z.J. Shen, Q.F. Liang, J.L. Xu, H.F. Liu, Morphological evolution of a single char particle with a low ash fusion temperature during the whole gasification process, Energy Fuels 32(2) (2018) 1550-1557. [73] J. Wang, L.X. Kong, J. Bai, H.Z. Li, Z.Q. Bai, X. Li, W. Li, The role of residual char on ash flow behavior, Part 1:The effect of graphitization degree of residual char on ash fusibility, Fuel 234(2018) 1173-1180. [74] J. Wang, L.X. Kong, J. Bai, H.L. Zhao, S. Guhl, H.Z. Li, Z.Q. Bai, B. Meyer, W. Li, The role of residual char on ash flow behavior, Part 2:Effect of SiO2/Al2O3 on ash fusibility and carbothermal reaction, Fuel 255(2019) 115846. [75] J. Wang, L.X. Kong, J. Bai, H.L. Zhao, K. Xue, X.L. Zhu, S. Guhl, M. Reinmöller, H. Z. Li, Z.Q. Bai, B. Meyer, W. Li, The role of residual char on ash flow behavior, Part 3:Effect of Fe2O3 content on ash fusibility and carbothermal reaction, Fuel 280(2020) 118705. [76] M. Liu, Z.J. Shen, Q.F. Liang, J.L. Xu, H.F. Liu, In situ experimental study of CO2 gasification of petcoke particles on molten slag surface at high temperature, Fuel 285(2021) 119158. [77] Z.J. Shen, Q.F. Liang, J.L. Xu, B.B. Zhang, D. Han, H.F. Liu, In situ experimental study on the combustion characteristics of captured chars on the molten slag surface, Combust. Flame 166(2016) 333-342. [78] M. Liu, Z.H. Zhou, Z.J. Shen, Q.F. Liang, J.L. Xu, H.F. Liu, Comparison of HTSM and TGA experiments of gasification characteristics of different coal chars and petcoke, Energy Fuels 33(4) (2019) 3057-3067. [79] Z.J. Shen, Q.F. Liang, J.L. Xu, H.F. Liu, K.F. Lin, Study on the combustion characteristics of a two-dimensional particle group for coal char and petroleum coke particles, Fuel 253(2019) 501-511. [80] M. Liu, Z.J. Shen, Q.F. Liang, H.F. Liu, Particle fluctuating motions induced by gas-solid phase reaction, Chem. Eng. J. 388(2020) 124348. [81] J.L. Xu, Q.F. Liang, Z.H. Dai, H.F. Liu, Comprehensive model with time limited wall reaction for entrained flow gasifier, Fuel 184(2016) 118-127. [82] Z.J. Shen, Q.F. Liang, J.L. Xu, B.B. Zhang, H.F. Liu, In-situ experimental study of CO2 gasification of char particles on molten slag surface, Fuel 160(2015) 560-567. [83] Z.J. Shen, Q.F. Liang, J.L. Xu, H.F. Liu, K.F. Lin, Study on the fragmentation behaviors of deposited particles on the molten slag surface and their effects on gasification for different coal ranks and petroleum coke, Energy Fuels 32(9) (2018) 9243-9254. [84] Z.J. Shen, Q.F. Liang, J.L. Xu, H.F. Liu, In situ study on the formation mechanism of bubbles during the reaction of captured chars on molten slag surface, Int. J. Heat Mass Transf. 95(2016) 517-524. [85] C.H. Hu, Y. Gong, Q.H. Guo, Y.F. Wang, G.S. Yu, Experimental study on the spectroscopy of opposed impinging diesel flames based on a bench-scale gasifier, Energy Fuels 31(4) (2017) 4469-4478. [86] Q. Zhang, Y. Gong, Q.H. Guo, X.D. Song, G.S. Yu, Experimental study on CH* chemiluminescence characteristics of impinging flames in an opposed multiburner gasifier, AIChE J. 63(6) (2017) 2007-2018. [87] X.D. Song, Q.H. Guo, C.H. Hu, Y. Gong, G.S. Yu, Optical experimental study on the characteristics of impinging coal-water slurry flame in an opposed multiburner gasifier, Fuel 188(2017) 132-139. [88] T. Zhang, Q.H. Guo, Q.F. Liang, Z.H. Dai, G.S. Yu, Distribution characteristics of OH*, CH*, and C2* luminescence in CH4/O2 co-flow diffusion flames, Energy Fuels 26(9) (2012) 5503-5508. [89] H.W. Zhu, C.H. Hu, Q.H. Guo, Y. Gong, G.S. Yu, Investigation on chemiluminescence and structure characteristics in CH4/O2 diffusion flames, Exp. Therm. Fluid Sci. 102(2019) 595-602. [90] L. He, Q.H. Guo, Y. Gong, F.C. Wang, G.S. Yu, Investigation of OH* chemiluminescence and heat release in laminar methane-oxygen co-flow diffusion flames, Combust. Flame 201(2019) 12-22. [91] Y. Gong, G.S. Yu, Q.H. Guo, Z.J. Zhou, F.C. Wang, Y.D. Liu, Experimental study on particle characteristics in an opposed multi-burner gasifier, Chem. Eng. Sci. 117(2014) 93-106. [92] Y. Gong, Q. Zhang, Q.H. Guo, Z.C. Xue, F.C. Wang, G.S. Yu, Vision-based investigation on the ash/slag particle deposition characteristics in an impinging entrained-flow gasifier, Appl. Energy 206(2017) 1184-1193. [93] Z.C. Xue, Q.H. Guo, Y. Gong, X.X. Wu, F.C. Wang, G.S. Yu, Detailed deposition characteristics around burner plane in an impinging entrained-flow coal gasifier, Chem. Eng. Sci. 198(2019) 85-97. [94] Z.C. Xue, Q.H. Guo, Y. Gong, Y.F. Wang, G.S. Yu, In-situ atomization and flame characteristics of coal water slurry in an impinging entrained-flow gasifier, Chem. Eng. Sci. 190(2018) 248-259. [95] C. Li, Z.H. Dai, Z.H. Sun, F.C. Wang, Modeling of an opposed multiburner gasifier with a reduced-order model, Ind. Eng. Chem. Res. 52(16) (2013) 5825-5834. [96] S. Halama, H. Spliethoff, Numerical simulation of entrained flow gasification:Reaction kinetics and char structure evolution, Fuel Process. Technol. 138(2015) 314-324. [97] J.L. Xu, Q.F. Liang, Z.H. Dai, H.F. Liu, The influence of swirling flows on pulverized coal gasifiers using the comprehensive gasification model, Fuel Process. Technol. 172(2018) 142-154. [98] Z.H. Sun, Z.H. Dai, Z.J. Zhou, Q.H. Guo, G.S. Yu, Numerical simulation of industrial opposed multiburner coal-water slurry entrained flow gasifier, Ind. Eng. Chem. Res. 51(6) (2012) 2560-2569. [99] J.L. Xu, Z.H. Dai, H.F. Liu, L.Y. Guo, F. Sun, Modeling of multiphase reaction and slag flow in single-burner coal water slurry gasifier, Chem. Eng. Sci. 162(2017) 41-52. [100] J.L. Xu, H. Zhao, Z.H. Dai, H.F. Liu, F.C. Wang, Influences of height-diameter ratio on multiphase reaction flow of single-burner coal water slurry gasifier, Chem. Eng. China 44(4) (2016) 68-73. (in Chinese) [101] F.C. Wang, Coal gasification technologies in China:Review and prospect, Clean Coal Technol. 27(1) (2021) 1-50. (in Chinese) |