[1] F.M. Orr Jr., Onshore geologic storage of CO2, Science 325(5948) (2009) 1656-1658. [2] C.M. White, D.H. Smith, K.L. Jones, A.L. Goodman, S.A. Jikich, R.B. LaCount, S.B. DuBose, E. Ozdemir, B.I. Morsi, K.T. Schroeder, Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery-A review, Energy Fuels 19(3) (2005) 659-724. [3] M. Mazzotti, R. Pini, G. Storti, Enhanced coalbed methane recovery, J. Supercrit. Fluids 47(3) (2009) 619-627. [4] M. Godec, G. Koperna, J. Gale, CO2-ECBM:A review of its status and global potential, Energy Procedia 63(2014) 5858-5869. [5] L. Wang, S.M. Liu, Y.P. Cheng, G.Z. Yin, D.M. Zhang, P.K. Guo, Reservoir reconstruction technologies for coalbed methane recovery in deep and multiple seams, Int. J. Min. Sci. Technol. 27(2) (2017) 277-284. [6] Q.Q. Wang, D.F. Zhang, H.H. Wang, L.L. Gu, J. Yang, R. Yang, J. Tao, Effect of CO2 on physico-chemical characteristics of coal during sequestration process:A perspective, Chem. Ind. Eng. Prog. 34(1) (2015) 258-265. (in Chinese) [7] Y.Y. Liu, J. Wilcox, Molecular simulation studies of CO2 adsorption by carbon model compounds for carbon capture and sequestration applications, Environ. Sci. Technol. 47(1) (2013) 95-101. [8] X.Q. Lu, D.L. Jin, S.X. Wei, M.M. Zhang, Q. Zhu, X.F. Shi, Z.G. Deng, W.Y. Guo, W. Z. Shen, Competitive adsorption of a binary CO2-CH4 mixture in nanoporous carbons:Effects of edge-functionalization, Nanoscale 7(3) (2015) 1002-1012. [9] P.J. Reucroft, K.B. Patel, Surface area and swellability of coal, Fuel 62(3) (1983) 279-284. [10] Y. Du, S.X. Sang, Z.J. Pan, W.F. Wang, S.Q. Liu, C.Q. Fu, Y.C. Zhao, J.Y. Zhang, Experimental study of supercritical CO2-H2O-coal interactions and the effect on coal permeability, Fuel 253(2019) 369-382. [11] G.L. Zhang, P.G. Ranjith, M.S.A. Perera, Y.Y. Lu, X. Choi, Quantitative analysis of micro-structural changes in a bituminous coal after exposure to supercritical CO2 and water, Nat. Resour. Res. 28(4) (2019) 1639-1660. [12] J.J. Kolak, R.C. Burruss, Geochemical investigation of the potential for mobilizing non-methane hydrocarbons during carbon dioxide storage in deep coal beds, Energy Fuels 20(2) (2006) 566-574. [13] D.F. Zhang, L.L. Gu, S.G. Li, P.C. Lian, J. Tao, Interactions of supercritical CO2 with coal, Energy Fuels 27(1) (2013) 387-393. [14] W. Li, H.F. Liu, X.X. Song, Influence of fluid exposure on surface chemistry and pore-fracture morphology of various rank coals:Implications for methane recovery and CO2 storage, Energy Fuels 31(11) (2017) 12552-12569. [15] Y.H. Zhang, M. Lebedev, M. Sarmadivaleh, A. Barifcani, S. Iglauer, Swellinginduced changes in coal microstructure due to supercritical CO2 injection, Geophys. Res. Lett. 43(17) (2016) 9077-9083. [16] H. Yan, J.X. Zhang, S.S. Rahman, N. Zhou, Y. Suo, Predicting permeability changes with injecting CO2 in coal seams during CO2 geological sequestration:A comparative study among six SVM-based hybrid models, Sci. Total Environ. 705(2020) 135941. [17] B.N. Zhang, W.G. Liang, P.G. Ranjith, W. He, Z.G. Li, X.G. Zhang, Effects of coal deformation on different-phase CO2 permeability in sub-bituminous coal:An experimental investigation, Energies 11(11) (2018) 2926. [18] K.Z. Zhang, Y.P. Cheng, W. Li, D.M. Wu, Z.D. Liu, Influence of supercritical CO2 on pore structure and functional groups of coal:Implications for CO2 sequestration, J. Nat. Gas. Sci. Eng. 40(2017) 288-298. [19] M.S.A. Perera, P.G. Ranjith, Carbon dioxide sequestration effects on coal's hydro-mechanical properties:A review, Int. J. Energy Res. 36(10) (2012) 1015-1031. [20] H. Yan, J.X. Zhang, N. Zhou, M. Li, Application of hybrid artificial intelligence model to predict coal strength alteration during CO2 geological sequestration in coal seams, Sci. Total Environ. 711(2020) 135029. [21] M.S.A. Perera, Influences of CO2 injection into deep coal seams:A review, Energy Fuels 31(10) (2017) 10324-10334. [22] K.Z. Zhang, Y.P. Cheng, K. Jin, H.J. Guo, Q.Q. Liu, J. Dong, W. Li, Effects of supercritical CO2 fluids on pore morphology of coal:Implications for CO2 geological sequestration, Energy Fuels 31(5) (2017) 4731-4741. [23] Q.Q. Wang, D.F. Zhang, H.H. Wang, W.P. Jiang, X.P. Wu, J. Yang, P.L. Huo, Influence of CO2 exposure on high-pressure methane and CO2 adsorption on various rank coals:Implications for CO2 sequestration in coal seams, Energy Fuels 29(6) (2015) 3785-3795. [24] Y.H. Zhang, M. Lebedev, M. Sarmadivaleh, A. Barifcani, T. Rahman, S. Iglauer, Swelling effect on coal micro structure and associated permeability reduction, Fuel 182(2016) 568-576. [25] C.J. Liu, S.X. Sang, K. Zhang, F. Song, H.W. Wang, X.F. Fan, Effects of temperature and pressure on pore morphology of different rank coals:Implications for CO2 geological storage, J. CO2 Util. 34(2019) 343-352. [26] S.Q. Liu, S.X. Sang, J.S. Ma, T. Wang, Y. Du, H.H. Fang, Effects of supercritical CO2 on micropores in bituminous and anthracite coal, Fuel 242(2019) 96-108. [27] S.Q. Liu, J.S. Ma, S.X. Sang, T. Wang, Y. Du, H.H. Fang, The effects of supercritical CO2 on mesopore and macropore structure in bituminous and anthracite coal, Fuel 223(2018) 32-43. [28] G.L. Zhang, P.G. Ranjith, B.S. Wu, M.S.A. Perera, A. Haque, D.Y. Li, Synchrotron X-ray tomographic characterization of microstructural evolution in coal due to supercritical CO2 injection at in-situ conditions, Fuel 255(2019) 115696. [29] Y.H. Zhang, M. Lebedev, Y. Jing, H.Y. Yu, S. Iglauer, In-situ X-ray microcomputed tomography imaging of the microstructural changes in waterbearing medium rank coal by supercritical CO2 flooding, Int. J. Coal Geol. 203(2019) 28-35. [30] M. Mastalerz, W. Solano-Acosta, A. Schimmelmann, A. Drobniak, Effects of coal storage in air on physical and chemical properties of coal and on gas adsorption, Int. J. Coal Geol. 79(4) (2009) 167-174. [31] GB/T 212-2008, Proximately Analysis of Coal, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of the People's Republic of China, Standards Press of China, Beijing, 2008. (in Chinese) [32] STM D1412/D1412M-19, Standard Test Method for Equilibrium Moisture of Coal at 96 to 97 Percent Relative Humidity and 30 C, ASTM International, West Conshohocken, PA, 2019. www.astm.org. [33] ASTM D2798-20, Standard Test Method for Microscopical Determination of the Vitrinite Reflectance of Coal, ASTM International, West Conshohocken, PA, 2020. www.astm.org. [34] D.F. Zhang, C. Li, J. Zhang, Z.M. Lun, S.Q. Jia, C.J. Luo, W.P. Jiang, Influences of dynamic entrainer-blended supercritical CO2 fluid exposure on high-pressure methane adsorption on coals, J. Nat. Gas Sci. Eng. 66(2019) 180-191. [35] B. Ryan, A discussion on moisture in coal implications for coalbed gas and coal utilization, Mines. Pet. Resour. 1(2006) 139-149. [36] A.L. Goodman, A. Busch, G.J. Duffy, J.E. Fitzgerald, K.A.M. Gasem, Y. Gensterblum, B.M. Krooss, J. Levy, E. Ozdemir, Z.J. Pan, R.L. Robinson, K. Schroeder, M. Sudibandriyo, C.M. White, An inter-laboratory comparison of CO2 isotherms measured on argonne premium coal samples, Energy Fuels 18(4) (2004) 1175-1182. [37] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure. Appl. Chem. 57(1985) 603-619. [38] G. Amarasekera, M.J. Scarlett, D.E. Mainwaring, Micropore size distributions and specific interactions in coals, Fuel 74(1995) 115-118. [39] R.T. Yang, Adsorbents:Fundamentals and Applications, John Wiley and Sons, New York, 2003. [40] B.B. Gathitu, W.Y. Chen, M. McClure, Effects of coal interaction with supercritical CO2:Physical structure, Ind. Eng. Chem. Res. 48(10) (2009) 5024-5034. [41] S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der waals adsorption of gases, J. Am. Chem. Soc. 62(1940) 1723-1732. [42] E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms, J. Am. Chem. Soc. 73(1951) 373-380. [43] M.D. Sun, B.S. Yu, Q.H. Hu, S. Chen, W. Xia, R.C. Ye, Nanoscale pore characteristics of the lower Cambrian Niutitang formation shale:A case study from Well Yuke #1 in the southeast of Chongqing, China, Int. J. Coal Geol 154-155(2016) 16-29. [44] P.L. Huo, D.F. Zhang, Z. Yang, W. Li, J. Zhang, S.Q. Jia, CO2 geological sequestration:Displacement behavior of shale gas methane by carbon dioxide injection, Int. J. Greenhouse Gas Control 66(2017) 48-59. [45] D.D. Do, Adsorption Analysis:Equilibria and Kinetics, Imperial College Press, London, 1998. [46] Y.L. Chen, L.Y. Cao, W. He, R. He, Effects of pore characteristics of fractal porous media on gas diffusion, Chin. J. Chem. Eng. 62(11) (2011) 3024-3029. [47] X.X. Fu, D.F. Zhang, W.P. Jiang, Z.M. Lun, C.P. Zhao, H.T. Wang, Y.H. Li, Influence of physicochemical properties of coals on pore morphology and methane adsorption:A perspective, Chem. Ind. Eng. Prog. 38(06) (2019) 2714-2725. (in Chinese) [48] X.F. Liu, D.Z. Song, X.Q. He, Z.P. Wang, M.R. Zeng, L.K. Wang, Quantitative analysis of coal nanopore characteristics using atomic force microscopy, Powder Technol. 346(2019) 332-340. [49] X.Q. He, X.F. Liu, D.Z. Song, B.S. Nie, Effect of microstructure on electrical property of coal surface, Appl. Surf. Sci. 483(2019) 713-720. [50] W. Li, H.F. Liu, X.X. Song, Multifractal analysis of Hg pore size distributions of tectonically deformed coals, Int. J. Coal Geol. 144-145(2015) 138-152. [51] F.J. Caniego, M.A. Martin, F. San Jose, Renyi dimensions of soil pore size distribution, Geoderma 112(3-4) (2003) 205-216. [52] J. Muller, Characterization of pore space in chalk by multifractal analysis, J. Hydrol. 187(1-2) (1996) 215-222. [53] E.V. Vazquez, J.P. Ferreiro, J.G.V. Miranda, A.P. Gonzalez, Multifractal analysis of pore size distributions as affected by simulated rainfall, Vadose Zone J. 7(2) (2008) 500-511. [54] J.P. Ferreiro, E.V. Vazquez, Multifractal analysis of Hg pore size distributions in soils with contrasting structural stability, Geoderma 160(1) (2010) 64-73. [55] F.S. Martinez, M.A. Martin,F.J. Caniego,M. Tuller,A.Guber,Y.Pachepsky,C.GarciaGutierrez, Multifractal analysis of discretized X-ray CT images for the characterization of soil macropore structures, Geoderma 156(1-2) (2010) 32-42. [56] P.J. Reucroft, A.R. Sethuraman, Effect of pressure on carbon dioxide induced coal swelling, Energy Fuels 1(1987) 72-75. [57] D.F. Zhang, C. Li, W.P. Jiang, Y.H. Li, Research review on the interaction of CO2 fluid with the minerals in the process of CO2 sequestration in coal seams, J. Saf. Environ. 20(01) (2020) 297-309. (in Chinese) [58] C.D. Hatch, J.S. Wiese, C.C. Crane, K.J. Harris, H.G. Kloss, J. Baltrusaitis, Water adsorption on clay minerals as a function of relative humidity:Application of BET and Freundlich adsorption models, Langmuir 28(3) (2012) 1790-1803. [59] H. Orchiston, Adsorption of water vapor:II. Clays at 25 C, Soil Sci. 78(1954) 463-480. [60] R.X. Jiang, H.G. Yu, Interaction between sequestered supercritical CO2 and minerals in deep coal seams, Int. J. Coal Geol. 202(2019) 1-13. [61] J.D. Rimstidt, H.L. Barnes, The kinetics of silica-water reactions, Geochim. Cosmochim. Acta 44(1980) 1683-1699. [62] G.K.W. Dawson, S.D. Golding, P. Massarotto, J.S. Esterle, Experimental supercritical CO2 and water interactions with coal under simulated in situ conditions, Energy Procedia 4(2011) 3139-3146. [63] Y. Du, S.X. Sang, W.F. Wang, S.Q. Liu, T. Wang, H.H. Fang, Experimental study of the reactions of supercritical CO2 and minerals in high-rank coal under formation conditions, Energy Fuels 32(2) (2018) 1115-1125. [64] H.H. Wang, D.F. Zhang, Q.Q. Wang, J. Peng, P.L. Huo, Coal matrix swelling during CO2 sequestration in deep coal seams:A perspective, Chem. Ind. Eng. Prog. 34(07) (2015) 2031-2038. (in Chinese) [65] B.N. Zhang, W.G. Liang, P.G. Ranjith, Z.G. Li, C. Li, D.S. Hou, Coupling effects of supercritical CO2 sequestration in deep coal seam, Energy Fuels 33(1) (2018) 460-473. [66] J. Zhang, D.F. Zhang, P.L. Huo, W.P. Jiang, Z. Yang, R. Yang, W. Li, S.Q. Jia, Functional groups on coal matrix surface dependences of carbon dioxide and methane adsorption:A perspective, Chem. Ind. Eng. Prog. 36(06) (2017) 1977-1986. (in Chinese) [67] X. Huang, W. Chu, W.J. Sun, C.F. Jiang, Y.Y. Feng, Y. Xue, Investigation of oxygen-containing group promotion effect on CO2-coal interaction by density functional theory, Appl. Surf. Sci. 299(2014) 162-169. [68] C.J. Luo, D.F. Zhang, Z.M. Lun, C.P. Zhao, H.T. Wang, Z.J. Pan, Y.H. Li, J. Zhang, S.Q. Jia, Displacement behaviors of adsorbed coalbed methane on coals by injection of SO2/CO2 binary mixture, Fuel 247(2019) 356-367. [69] S.R. Kelemen, P.J. Kwiatek, Quantification of organic oxygen species on the surface of fresh and reacted argonne premium coal, Energy Fuels 9(1995) 841-848. [70] D.F. Zhang, H.H. Wang, Q.Q. Wang, W. Li, W.P. Jiang, P.L. Huo, J. Zhang, L. Zhu, G.Q. Duan, C.C. Du, Interactions of nitric oxide with various rank coals:Implications for oxy-coal combustion flue gas sequestration in deep coal seams with enhanced coalbed methane recovery, Fuel 182(2016) 704-712. [71] H.H. Xin, D.M. Wang, X.Y. Qi, G.S. Qi, G.L. Dou, Structural characteristics of coal functional groups using quantum chemistry for quantification of infrared spectra, Fuel. Process. Technol. 118(2014) 287-295. [72] W. Li, Y.M. Zhu, S.B. Chen, Y. Zhou, Research on the structural characteristics of vitrinite in different coal ranks, Fuel 107(2013) 647-652. [73] W.P. Jiang, Q. Zhang, F.G. Zeng, Metamorphic degree of coal dependence of content and genesis of coal-bed methane in China, Energy Sources Part A 41(3) (2019) 378-388. [74] Y. Dang, L.M. Zhao, X.Q. Lu, J. Xu, P.P. Sang, S. Guo, H.Y. Zhu, W.Y. Guo, Molecular simulation of CO2/CH4 adsorption in brown coal:Effect of oxygen-, nitrogen-, and sulfur-containing functional groups, Appl. Surf. Sci. 423(2017) 33-42. [75] H. Xu, W. Chu, X. Huang, W.J. Sun, C.F. Jiang, Z.Q. Liu, CO2 adsorption-assisted CH4 desorption on carbon models of coal surface:A DFT study, Appl. Surf. Sci. 375(2016) 196-206. [76] Y.Y. Liu, J. Wilcox, Molecular simulation of CO2 adsorption in micro- and mesoporous carbons with surface heterogeneity, Int. J. Coal Geol. 104(2012) 83-95. [77] S. Mazumder, P. van Hemert, J. Bruining, K.H.A.A. Wolf, K. Drabe, In situ CO2-coal reactions in view of carbon dioxide storage in deep unminable coal seams, Fuel 85(12-13) (2006) 1904-1912. [78] H.J. Siriwardane, R.K. Gondle, D.H. Smith, Shrinkage and swelling of coal induced by desorption and sorption of fluids:Theoretical model and interpretation of a field project, Int. J. Coal Geol. 77(1-2) (2009) 188-202. [79] A. Busch, Y. Gensterblum, B.M. Krooss, Methane and CO2 sorption and desorption measurements on dry Argonne premium coals:Pure components and mixtures, Int. J. Coal Geol. 55(2-4) (2003) 205-224. [80] F. Alidad, R. Navik, Y.Z. Gai, Y.P. Zhao, Production of pristine graphene quantum dots from graphite by a shear-mixer in supercritical CO2, Chem. Phys. Lett. 710(2018) 64-69. [81] Y.Z. Gai, W.C. Wang, D. Xiao, H.J. Tan, M.Y. Lin, Y.P. Zhao, Exfoliation of graphite into graphene by a rotor-stator in supercritical CO2:Experiment and simulation, Ind. Eng. Chem. Res. 57(24) (2018) 8220-8229. [82] Z.C. Hu, D.F. Zhang, M. Wang, S.L. Liu, Influences of supercritical carbon dioxide fluid on pore morphology of various rank coals:A review, Energy Explor. Exploit. 38(5) (2020) 1267-1294. |