中国化学工程学报 ›› 2021, Vol. 37 ›› Issue (9): 12-29.DOI: 10.1016/j.cjche.2020.11.025
Hang Yao1,2, Yuwei He2,3, Jinrong Ma2, Lang Jiang1, Jingan Li4, Jin Wang1, Nan Huang1
收稿日期:
2020-07-06
修回日期:
2020-10-15
出版日期:
2021-09-28
发布日期:
2021-11-02
通讯作者:
Jin Wang
基金资助:
Hang Yao1,2, Yuwei He2,3, Jinrong Ma2, Lang Jiang1, Jingan Li4, Jin Wang1, Nan Huang1
Received:
2020-07-06
Revised:
2020-10-15
Online:
2021-09-28
Published:
2021-11-02
Contact:
Jin Wang
Supported by:
摘要: Treatments of atherogenesis, one of the most common cardiovascular diseases (CVD), are continuously being made thanks to innovation and an increasingly in-depth knowledge of percutaneous transluminal coronary angioplasty (PTCA), the most revolutionary medical procedure used for vascular restoration. Combined with an expanding balloon, vascular stents used at stricture sites enable the long-time restoration of vascular permeability. However, complication after stenting, in-stent restenosis (ISR), hinders the advancement of vascular stents and are associated with high medical costs for patients for decades years. Thus, the development of a high biocompatibility stent with improved safety and efficiency is urgently needed. This review provides an overview of current advances and potential technologies for the modification of stents for better treatment and prevention of ISR. In particular, the mechanisms of in-stent restenosis are investigated and summarized with the aim to comprehensively understanding the pathogenesis of stent complications. Then, according to different therapeutic functions, the current stent modification strategies are reviewed, including polymeric drug eluting stents, biological friendly stents, prohealing stents, and gene stents. Finally, the review provides an outlook of the challenges in the design of stents with optimal properties. Therefore, this review is a valuable and practical guideline for the development of cardiovascular stents.
Hang Yao, Yuwei He, Jinrong Ma, Lang Jiang, Jingan Li, Jin Wang, Nan Huang. Recent advances in cardiovascular stent for treatment of in-stent restenosis: Mechanisms and strategies[J]. 中国化学工程学报, 2021, 37(9): 12-29.
Hang Yao, Yuwei He, Jinrong Ma, Lang Jiang, Jingan Li, Jin Wang, Nan Huang. Recent advances in cardiovascular stent for treatment of in-stent restenosis: Mechanisms and strategies[J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 12-29.
[1] U. Sigwart, J. Puel, V. Mirkovitch, F. Joffre, L. Kappenberger Francis, Intravascular stents to prevent occlusion and re-stenosis after transluminal angioplasty, New. Engl. J. Med. 316(1987) 701-706. [2] J. Torrado, L. Buckley, A. Duran, P. Trujillo, S. Toldo, J. Valle Raleigh, A. Abbate, G. Biondi-Zoccai, L.A. Guzman, Restenosis, stent thrombosis, and bleeding complications:Navigating between scylla and charybdis, J. Am. Coll. Cardiol. 71(2018) 1676-1695. [3] M.S. Kim, L.S. Dean, In-stent restenosis, Cardiovasc Ther. 29(2011) 190-198. [4] E.P. McFadden, E. Stabile, E. Cheneau, A.T. Ong, T. Kinnaird, W.O. Suddath, N.J. Weissman, R. Torguson, K.M. Kent, A.D. Pichard, L.F. Satler, R. Waksman, P.W. Serruys, R. Waksman, P.W. Serruys, Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy, Lancet. 364(2004) 1519-1521. [5] G. Nakazawa, A.V. Finn, M. Vorpahl, E.R. Ladich, F.D. Kolodgie, R. Virmani, Coronary responses and differential mechanisms of late stent thrombosis attributed to first-generation sirolimus- and paclitaxel-eluting stents, J. Am. Coll. Cardiol. 57(2011) 390-398. [6] R.P. Kraak, H.H. de Boer, J. Elias, C.A. Ambarus, A.C. van der Wal, R.J. de Winter, J.J. Wykrzykowska, Coronary artery vessel healing pattern, short and long term, after implantation of the everolimus-eluting bioresorbable vascular scaffold, J. Am. Heart. Assoc. 4(2015) e002551. [7] G. Suna, W. Wojakowski, M. Lynch, J. Barallobre-Barreiro, X. Yin, U. Mayr, F. Baig, R. Lu, M. Fava, R. Hayward, C. Molenaar, S.J. White, T. Roleder, K.P. Milewski, P. Gasior, P.P. Buszman, P. Buszman, M. Jahangiri, C.M. Shanahan, J. Hill, M. Mayr, Extracellular matrix proteomics reveals interplay of aggrecan and aggrecanases in vascular remodeling of stented coronary arteries, Circulation 137(2018) 166-183. [8] H. Tahir, C. Bona-Casas, A.G. Hoekstra, Modelling the effect of a functional endothelium on the development of in-stent restenosis, PLoS One 8(2013) e66138. [9] D.G. Kokkinidis, S.W. Waldo, E.J. Armstrong, Treatment of coronary artery instent restenosis, Expert. Rev. Cardiovasc. Ther. 15(2017) 191-202. [10] N. Kuroda, Y. Kobayashi, M. Nameki, Intimal hyperplasia regression from 6 to 12 months after stenting, Am. J. Cardiol. 89(2002) 869-872. [11] A.K. Mitra, D.K. Agrawal, In stent restenosis:bane of the stent era, J. Clin. Pathol. 59(2006) 232. [12] P.H. Grewe, T. Deneke, A. Machraoui, J. Barmeyer, K.-M. Müller, Acute and chronic tissue response to coronary stent implantation:pathologic findings in human specimen, J. Am. Coll. Cardiol. 35(2000) 157-163. [13] A. Farb, F.D. Kolodgie, J.Y. Hwang, A.P. Burke, K. Tefera, D.K. Weber, T.N. Wight, R. Virmani, Extracellular matrix changes in stented human coronary arteries, Circulation 110(2004) 940-947. [14] I.-M.o. Chung, H.K. Gold, S.M. Schwartz, Y. Ikari, M.A. Reidy, T.N. Wight, Enhanced extracellular matrix accumulation in restenosis of coronary arteries after stent deployment, J. Am. Coll. Cardiol., 40(2002) 2072. [15] E.P. Amento, N. Ehsani, H. Palmer, P. Libby, Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells, Arterioscler. Thromb. 11(1991) 1223-1230. [16] G. Pasterkamp, D.P.V. de Kleijn, C. Borst, Arterial remodeling in atherosclerosis, restenosis and after alteration of blood flow:Potential mechanisms and clinical implications, Cardiovasc. Res. 45(2000) 843-852. [17] Z. Ma, C. Mao, Y. Jia, Y. Fu, W. Kong, Extracellular matrix dynamics in vascular remodeling, Am. J. Physiol:Cell Physiol. 319(3) (2020) C481C-499. [18] T. Inoue, K. Croce, T. Morooka, M. Sakuma, K. Node, D.I. Simon, Vascular inflammation and repair:Implications for re-endothelialization, restenosis, and stent thrombosis, JACC Cardiovasc. interv. 4(2011) 1057-1066. [19] F.G.P. Welt, Inflammation and restenosis in the stent era, Arterioscler, thromb, and vasc. biol. 22(2002) 1769-1776. [20] B. Chandrasekar, J.-F. Tanguay, Platelets and restenosis, J. Am. Coll. Cardiol. 35(2000) 555-562. [21] M. Maleknia, N. Ansari, H. Haybar, M. Maniati, N. Saki, Inflammatory growth factors and in-stent restenosis:Effect of cytokines and growth factors, SN Compr. Clin. Med. 2(2020) 397-407. [22] B. Tesfamariam, Endothelial repair and regeneration following intimal injury, J. Cardiovasc. Transl. Res. 9(2016) 91-101. [23] A.V. Finn, G. Nakazawa, M. Joner, F.D. Kolodgie, E.K. Mont, H.K. Gold, R. Virmani, Vascular responses to drug eluting stents:importance of delayed healing, Arterioscler, thromb, and vasc biol 27(2007) 1500-1510. [24] S. Torii, H. Jinnouchi, A. Sakamoto, M. Kutyna, A. Cornelissen, S. Kuntz, L. Guo, H. Mori, E. Harari, K.H. Paek, R. Fernandez, D. Chahal, M.E. Romero, F.D. Kolodgie, A. Gupta, R. Virmani, A.V. Finn, Drug-eluting coronary stents:insights from preclinical and pathology studies, Nat. Rev. Cardiol. 17(2020) 37-51. [25] X. Li, H. Qiu, P. Gao, Y. Yang, Z. Yang, N. Huang, Synergetic coordination and catecholamine chemistry for catalytic generation of nitric oxide on vascular stents, NPG Asia Mater. 10(2018) 482-496. [26] Y. Fan, Y. Zhang, Q. Zhao, Y. Xie, R. Luo, P. Yang, Y. Weng, Immobilization of nano Cu-MOFs with polydopamine coating for adaptable gasotransmitter generation and copper ion delivery on cardiovascular stents, Biomaterials 204(2019) 36-45. [27] Y.S. Chatzizisis, A.U. Coskun, M. Jonas, E.R. Edelman, C.L. Feldman, P.H. Stone, Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling:molecular, cellular, and vascular behavior, J. Am. Coll. Cardiol. 49(2007) 2379-2393. [28] K. Shishido, P. Antoniadis Antonios, S. Takahashi, M. Tsuda, S. Mizuno, I. Andreou, I.Michail Papafaklis, U. Coskun Ahmet, C. O'Brien, L. Feldman Charles, S. Saito, R. Edelman Elazer, H. Stone Peter, Effects of low endothelial shear stress after stent implantation on subsequent neointimal hyperplasia and clinical outcomes in humans, J. Am. Heart Assoc. 5(9) (2016) e002949. [29] K.C. Koskinas, Y.S. Chatzizisis, A.P. Antoniadis, G.D. Giannoglou, Role of endothelial shear stress in stent restenosis and thrombosis:pathophysiologic mechanisms and implications for clinical translation, J. Am. Coll. Cardiol. 59(2012) 1337-1349. [30] K.S. Cunningham, A.I. Gotlieb, The role of shear stress in the pathogenesis of atherosclerosis, Lab. Invest. 85(2005) 9-23. [31] F. Gijsen, Y. Katagiri, P. Barlis, C. Bourantas, C. Collet, U. Coskun, J. Daemen, J. Dijkstra, E. Edelman, P. Evans, K. van der Heiden, R. Hose, B.-K. Koo, R. Krams, A. Marsden, F. Migliavacca, Y. Onuma, A. Ooi, E. Poon, H. Samady, P. Stone, K. Takahashi, D. Tang, V. Thondapu, E. Tenekecioglu, L. Timmins, R. Torii, J. Wentzel, P. Serruys, Expert recommendations on the assessment of wall shear stress in human coronary arteries:existing methodologies, technical considerations, and clinical applications, Eur. Heart J. 40(2019) 3421-3433. [32] J.M. Jimenez, P.F. Davies, Hemodynamically driven stent strut design, Ann. Biomed. Eng. 37(2009) 1483-1494. [33] P. Chichareon, Y. Katagiri, T. Asano, K. Takahashi, N. Kogame, R. Modolo, E. Tenekecioglu, C.-C. Chang, M. Tomaniak, N. Kukreja, J.J. Wykrzykowska, J.J. Piek, P.W. Serruys, Y. Onuma, Mechanical properties and performances of contemporary drug-eluting stent:focus on the metallic backbone, Expert Rev. Med. Devices 16(2019) 211-228. [34] C. Hehrlein, B. Schorch, N. Kress, A. Arab, C. von zur Mühlen, C. Bode, T. Epting, J. Haberstroh, L. Mey, H. Schwarzbach, R. Kinscherf, V. Stachniss, S. Schiestel, A. Kovacs, H. Fischer, E. Nennig, Zn-alloy provides a novel platform for mechanically stable bioresorbable vascular stents, PLoS One, 14(2019) e0209111. [35] I.B.A. Menown, R. Noad, E.J. Garcia, I. Meredith, The platinum chromium element stent platform:from alloy, to design, to clinical practice, Adv. Ther. 27(2010) 129-141. [36] C. Briguori, C. Sarais, P. Pagnotta, F. Liistro, M. Montorfano, A. Chieffo, F. Sgura, N. Corvaja, R. Albiero, G. Stankovic, C. Toutoutzas, E. Bonizzoni, C. Di Mario, A. Colombo, In-stent restenosis in small coronary arteries, J. Am. Coll. Cardiol. 40(2002) 403-409. [37] R. Aguilar, J.M. Ruiz-Nodar, C. Romero, M. Gómez-Recio, L. Martínez-Elbal, Size effect of Wiktor Stent on the restenosis. Is bigger better?, J Am. Coll. Cardiol. 31(1998) 140. [38] G.W. Stone, S.G. Ellis, D.A. Cox, J. Hermiller, C. O'Shaughnessy, J.T. Mann, M. Turco, R. Caputo, P. Bergin, J. Greenberg, J.J. Popma, M.E. Russell, T.-I. Investigators, One-year clinical results with the slow-release, polymer-based, paclitaxel-eluting TAXUS stent:The TAXUS-IV trial, Circulation 109(2004) 1942-1947. [39] S.G. Ellis, D. Kandzari, D.J. Kereiakes, A. Pichard, K. Huber, F. Resnic, S. Yakubov, K. Callahan, M. Borgman, S.A. Cohen, Utility of sirolimus-eluting Cypher stents to reduce 12-month target vessel revascularization in saphenous vein graft stenoses:Results of a multicenter 350-patient casecontrol study, J. Invasive Cardiol. 19(2007) 404-409. [40] R. Wessely, A. Schömig, A. Kastrati, Sirolimus and paclitaxel on polymerbased drug-eluting stents, J. Am. Coll. Cardiol. 47(2006) 708. [41] S.H. Hofma, J. Brouwer, M.A. Velders, van, A.W.J. t Hof, P.C. Smits, M. Queré, C. J. de Vries, A.J. van Boven, Second-generation everolimus-eluting stents versus first-generation sirolimus-eluting stents in acute myocardial infarction, J. Am. Coll. Cardiol. 60(2012) 381. [42] J.r. Pache, A. Dibra, J. Mehilli, J. Dirschinger, A. Schömig, A. Kastrati, Drugeluting stents compared with thin-strut bare stents for the reduction of restenosis:a prospective, randomized trial, Eur. Heart. J., 26(2005) 1262-1268. [43] F. Feres, J.R. Costa Jr, A. Abizaid, Very late thrombosis after drug-eluting stents, Catheter. Cardiovasc. Interv. 68(2006) 83-88. [44] E.P. McFadden, E. Stabile, E. Regar, E. Cheneau, A.T.L. Ong, T. Kinnaird, W.O. Suddath, N.J. Weissman, R. Torguson, K.M. Kent, A.D. Pichard, L.F. Satler, R. Waksman, P.W. Serruys, Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy, Lancet. 364(2004) 1519-1521. [45] M.A.M. Beijk, J.J. Piek, XIENCE V everolimus-eluting coronary stent system:A novel second generation drug-eluting stent, Expert. Rev. Med. Devices 4(2007) 11-21. [46] K.W. Park, I.H. Chae, D.S. Lim, K.R. Han, H.M. Yang, H.Y. Lee, H.J. Kang, B.K. Koo, T. Ahn, J.H. Yoon, M.H. Jeong, T.J. Hong, W.Y. Chung, S.H. Jo, Y.J. Choi, S.H. Hur, H.M. Kwon, D.W. Jeon, B.O. Kim, S.H. Park, N.H. Lee, H.K. Jeon, H.C. Gwon, Y.S. Jang, H.S. Kim, Everolimus-eluting versus sirolimus-eluting stents in patients undergoing percutaneous coronary intervention, J. Am. Coll. Cardiol. 58(2011) 1844. [47] K.R. Kamath, J.J. Barry, K.M. Miller, The TaxusTM drug-eluting stent:A new paradigm in controlled drug delivery, Adv. Drug Deliv. Rev. 58(2006) 412-436. [48] G. Acharya, K. Park, Mechanisms of controlled drug release from drug-eluting stents, Adv. Drug Deliv. Rev. 58(2006) 387-401. [49] T. Tada, R.A. Byrne, S. Cassese, L. King, S. Schulz, J. Mehilli, A. Schömig, A. Kastrati, Comparative efficacy of 2 zotarolimus-eluting stent generations:Resolute versus endeavor stents in patients with coronary artery disease, Am. Heart J. 165(2013) 80-86. [50] G.W. Stone, P.S. Teirstein, I.T. Meredith, B. Farah, C.L. Dubois, R.L. Feldman, J. Dens, N. Hagiwara, D.J. Allocco, K.D. Dawkins, A. Prospective, Randomized evaluation of a novel everolimus-eluting coronary stent, J. Am. Coll. Cardiol. 57(2011) 1700. [51] H. Gada, A.J. Kirtane, W. Newman, M. Sanz, J.B. Hermiller, K.W. Mahaffey, D.E. Cutlip, K. Sudhir, L. Hou, K. Koo, G.W. Stone, 5-Year results of a randomized comparison of XIENCE V everolimus-eluting and TAXUS paclitaxel-eluting stents, JACC:Cardiovasc. Inter. 6(2013) 1263. [52] L. Räber, P. Jüni, E. Nüesch, B. Kalesan, P. Wenaweser, A. Moschovitis, A.A. Khattab, M. Bahlo, M. Togni, S. Cook, R. Vogel, C. Seiler, B. Meier, S. Windecker, Long-term comparison of everolimus-eluting and sirolimus-eluting stents for coronary revascularization, J. Am. Coll. Cardiol. 57(2011) 2143. [53] M. Joner, A.V. Finn, A. Farb, E.K. Mont, F.D. Kolodgie, E. Ladich, R. Kutys, K. Skorija, H.K. Gold, R. Virmani, Pathology of drug-eluting stents in humans, J. Am. Coll. Cardiol. 48(2006) 193. [54] L.K. Pendyala, D. Matsumoto, T. Shinke, T. Iwasaki, R. Sugimoto, D. Hou, J.P. Chen, J. Singh, S.B. King, N. Chronos, J. Li, Nobori stent shows less vascular inflammation and early recovery of endothelial function compared with cypher stent, JACC:Cardiovasc. Inter. 5(2012) 436. [55] E.D. Good, I. Cakulev, M.V. Orlov, D. Hirsh, J. Simeles, K. Mohr, P. Moll, H. Bloom, Long-term evaluation of biotronik linox and linoxsmart implantable cardioverter defibrillator leads, J. Cardiovasc. Electrophysiol. 27(2016) 735-742. [56] P.A. Lemos, I. Bienert, The Supralimus® sirolimus-eluting stent, Expert Rev. Med. Devices 10(2013) 295-300. [57] J. Kereiakes Dean, T. Meredith Ian, S. Windecker, R. Lee Jobe, R. Mehta Shamir, J. Sarembock Ian, L. Feldman Robert, B. Stein, C. Dubois, T. Grady, S. Saito, T. Kimura, T. Christen, J. Allocco Dominic, D. Dawkins Keith, Efficacy and safety of a novel bioabsorbable polymer-coated, everolimus-eluting coronary stent, Circ. Cardiovasc. Interv. 8(2015) e002372. [58] S. Saito, M. Valdes-Chavarri, G. Richardt, R. Moreno, A. Iniguez Romo, E. Barbato, D. Carrie, K. Ando, B. Merkely, R. Kornowski, H. Eltchaninoff, S. James, W. Wijns, C.I.I.I. on behalf of, A randomized, prospective, intercontinental evaluation of a bioresorbable polymer sirolimus-eluting coronary stent system:the CENTURY II (Clinical evaluation of new terumo drug-eluting coronary stent system in the treatment of patients with coronary artery disease) trial, Eur. Heart. J. 35(2014) 2021-2031. [59] B. Xu, Y. Saito, A. Baumbach, H. Kelbæk, N. van Royen, M. Zheng, M.-A. Morel, P. Knaapen, T. Slagboom, T.W. Johnson, G. Vlachojannis, K.E. Arkenbout, L. Holmvang, L. Janssens, A. Ochala, S. Brugaletta, C.K. Naber, R. Anderson, H. Rittger, S. Berti, E. Barbato, G.G. Toth, L. Maillard, C. Valina, P. Buszman, H. Thiele, V. Schächinger, A. Lansky, W. Wijns, 2-Year clinical outcomes of an abluminal groove-filled biodegradable-polymer sirolimus-eluting stent compared with a durable-polymer everolimus-eluting stent, JACC:Cardiovasc. Inter. 12(2019) 1679-1687. [60] D. Rizas Konstantinos, J. Mehilli, Stent polymers, Circ. Cardiovasc. Interv. 9(2016) e002943. [61] P.H. Lee, O. Kwon, J.M. Ahn, C.H. Lee, D.Y. Kang, J.B. Lee, S.J. Kang, S.W. Lee, Y. H. Kim, C.W. Lee, S.W. Park, D.W. Park, S.J. Park, Safety and effectiveness of second-generation drug-eluting stents in patients with left main coronary artery disease, J. Am. Coll. Cardiol. 71(2018) 832-841. [62] G.J. Vlachojannis, P.C. Smits, S.H. Hofma, M. Togni, N. Vázquez, M. Valdés, V. Voudris, T. Slagboom, J.-J. Goy, P. den Heijer, M. van der Ent, Biodegradable polymer biolimus-eluting stents versus durable polymer everolimus-eluting stents in patients with coronary artery disease, JACC:Cardiovasc. Inter. 10(2017) 1215. [63] J.F. Iglesias, O. Muller, D. Heg, M. Roffi, D.J. Kurz, I. Moarof, D. Weilenmann, C. Kaiser, M. Tapponnier, S. Stortecky, S. Losdat, E. Eeckhout, M. Valgimigli, A. Odutayo, M. Zwahlen, P. Jüni, S. Windecker, T. Pilgrim, Biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents in patients with ST-segment elevation myocardial infarction (BIOSTEMI):a single-blind, prospective, randomised superiority trial, Lancet. 394(2019) 1243-1253. [64] H. Chen, L. Yuan, W. Song, Z. Wu, D. Li, Biocompatible polymer materials:Role of protein-surface interactions, Prog. Polym. Sci. 33(2008) 1059-1087. [65] H. Qi, C. Zhang, H. Guo, W. Zheng, J. Yang, X. Zhou, L. Zhang, Bioinspired multifunctional protein coating for antifogging, self-cleaning, and antimicrobial properties, ACS Appl. Mater. Interfaces 11(2019) 24504-24511. [66] Lei Zhang, T. Zhiqiang Cao, L. Bai, J. Carr, C. Ella-Menye, B.D. Irvin, S. Jiang Ratner, Zwitterionic hydrogels implanted in mice resist the foreign body reaction, Nat. Biotechnol. 31(2013) 553-556. [67] J.L. Harding, M.M. Reynolds, Combating medical device fouling, Trends Biotechnol. 32(2014) 140-146. [68] S. Jiang, Z. Cao, Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications, Adv. Mater. 22(2010) 920-932. [69] X. Lin, P. Jain, K. Wu, D. Hong, H.C. Hung, M.B. O'Kelly, B. Li, P. Zhang, Z. Yuan, S. Jiang, Ultralow fouling and functionalizable surface chemistry based on zwitterionic carboxybetaine random copolymers, Langmuir. 35(2019) 1544-1551. [70] Y. Chang, Y.-J. Shih, C.-J. Lai, H.-H. Kung, S. Jiang, Blood-inert surfaces via ionpair anchoring of zwitterionic copolymer brushes in human whole blood, Adv. Funct. Mater. 23(2013) 1100-1110. [71] A.L. Lewis, Phosphorylcholine-based polymers and their use in the prevention of biofouling, Colloids. Surf. B. 18(2000) 261-275. [72] G. New, J.W. Moses, G.S. Roubin, M.B. Leon, A. Colombo, S.S. Iyer, F.O. Tio, R. Mehran, N. Kipshidze, Estrogen-eluting, phosphorylcholine-coated stent implantation is associated with reduced neointimal formation but no delay in vascular repair in a porcine coronary model, Catheter. Cardiovasc. Interv. 57(2002) 266-271. [73] I.T. Meredith, J. Ormiston, R. Whitbourn, I.P. Kay, D. Muller, J.J. Popma, D.E. Cutlip, P.J. Fitzgerald, Four-year clinical follow-up after implantation of the endeavor zotarolimus-eluting stent:Endeavor i, the first-in-human study, Am. J. Cardiol. 100(2007) S56-S61. [74] A. Kirtane, R. Patel, C. O'Shaunessy, B. McLaurin, D.E. Kandzari, M.B. Leon, A randomized comparison of the endeavor drug (Abt-578) eluting stent versus taxus paclitaxel-eluting stent in diabetic patients:Three-year outcomes from endeavor IV, J. Am. Coll. Cardiol. 55(2010) A210.E1980. [75] R.A. Costa, A. Abizaid, D. Bhatt, J.E.T.d. Paula, D. Siqueira, F. Devito, J.A. MarinNeto, R. Botelho, H. Castello, J. Mangione, G. Meireles, M. Centemero, L. Tanajura, A. Abizaid, F. Feres, Stent thrombosis following implantation of endeavor zotarolimus-eluting stents in patients with complex coronary lesions-insights from the large, prospective, randomized, multicenter optimize trial, J. Am. Coll. Cardiol. 63(2014) A1906. [76] X. Wang, X. Chen, L. Xing, C. Mao, H. Yu, J. Shen, Blood compatibility of a new zwitterionic bare metal stent with hyperbranched polymer brushes, J. Mater. Chem. B 1(2013) 5036. [77] Y. Wei, Y. Ji, L.L. Xiao, Q.K. Lin, J.P. Xu, K.F. Ren, J. Ji, Surface engineering of cardiovascular stent with endothelial cell selectivity for in vivo reendothelialisation, Biomaterials 34(2013) 2588-2599. [78] J. Liu, J. Wang, Y.-F. Xue, T.-T. Chen, D.-N. Huang, Y.-X. Wang, K.-F. Ren, Y.-B. Wang, G.-S. Fu, J. Ji, Biodegradable phosphorylcholine copolymer for cardiovascular stent coating, J. Mater. Chem. B 8(2020) 5361-5368. [79] S. Lee, S. Kim, J. Park, J.Y. Lee, Universal surface modification using dopaminehyaluronic acid conjugates for anti-biofouling, Int. J. Biol. Macromol. 151(2020) 1314-1321. [80] H.P. Felgueiras, L.M. Wang, K.F. Ren, M.M. Querido, Q. Jin, M.A. Barbosa, J. Ji, M.C.L. Martins, Octadecyl chains immobilized onto hyaluronic acid coatings by thiol-ene "click chemistry" increase the surface antimicrobial properties and prevent platelet adhesion and activation to polyurethane, ACS Appl. Mater. Interfaces 9(2017) 7979-7989. [81] S. Verheye, C.P. Markou, M.Y. Salame, B. Wan, S.B. King, K.A. Robinson, N.A.F. Chronos, S.R. Hanson, Reduced thrombus formation by hyaluronic acid coating of endovascular devices, Arterioscler Thromb. Vasc. Biol. 20(2000) 1168-1172. [82] R. Moseley, M. Walker, R.J. Waddington, W.Y.J. Chen, Comparison of the antioxidant properties of wound dressing materials-carboxymethylcellulose, hyaluronan benzyl ester and hyaluronan, towards polymorphonuclear leukocyte-derived reactive oxygen species, Biomaterials 24(2003) 1549-1557. [83] J. Li, K. Zhang, H. Chen, T. Liu, P. Yang, Y. Zhao, N. Huang, A novel coating of type IV collagen and hyaluronic acid on stent material-titanium for promoting smooth muscle cell contractile phenotype, Mater. Sci. Eng. C Mater. Biol. Appl. 38(2014) 235-243. [84] S. Yu, Y. Gao, X. Mei, T. Ren, S. Liang, Z. Mao, C. Gao, Preparation of an Arg-GluAsp-Val peptide density gradient on hyaluronic acid-coated poly(epsiloncaprolactone) film and its influence on the selective adhesion and directional migration of endothelial cells, ACS Appl. Mater. Interfaces 8(2016) 29280-29288. [85] A. Farb, Morphological predictors of restenosis after coronary stenting in humans, Circulation 105(2002) 2974-2980. [86] F. Taraballi, M. Sushnitha, C. Tsao, G. Bauza, C. Liverani, A. Shi, E. Tasciotti, Biomimetic tissue engineering:Tuning the immune and inflammatory response to implantable Biomaterials, Adv. Healthc. Mater. 7(2018) 1800490. [87] R. Virmani, F. Liistro, G. Stankovic, C. Di Mario, M. Montorfano, A. Farb, F.D. Kolodgie, A. Colombo, Mechanism of late in-stent restenosis after implantation of a paclitaxel derivate-eluting polymer stent system in humans, Circulation 106(2002) 2649-2651. [88] K. Inoue, M. Imai, T. Kimura, M. Nobuyoshi, Abstract 9910:Chronic inflammatory responses to polymer can evoke both late restenosis and very late stent thrombosis after sirolimus-eluting stent implantation in human coronary arteries, Circulation 124(2011) A9910. [89] K. Inoue, M. Imai, T. Kimura, Abstract 12072:Damage to coating polymer can cause serious complications after drug-eluting stent implantation:A pathological study in human coronary arteries, Circulation 134(2016) A12072. [90] S. Tarbine, C. Costantini, C. Costantini, R. Macedo, M. de Freitas Santos, D. Zanuttini, M.A. Denk, Impact of intravascular imaging methods for optimal scaffold implantation reducing thrombosis after absorb bvs in a real world setting:Identification of factors related to stent failure, J. Am. Coll. Cardiol. 71(2018) A1070. [91] S.H. Ye, Y. Chen, Z. Mao, X. Gu, V. Shankarraman, Y. Hong, V. Shanov, W.R. Wagner, Biodegradable zwitterionic polymer coatings for magnesium alloy stents, Langmuir. (2018) 1421-1429. [92] G.W. Stone, J.F. Granada, Very late thrombosis after bioresorbable scaffolds:Cause for concern?, J Am. Coll. Cardiol. 66(2015) 1915-1917. [93] R. Waksman, R. Pakala, P.K. Kuchulakanti, R. Baffour, D. Hellinga, R. Seabron, F.O. Tio, E. Wittchow, S. Hartwig, C. Harder, R. Rohde, B. Heublein, A. Andreae, K.-H. Waldmann, A. Haverich, Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries, Catheter. Cardiovasc. Interv. 68(2006) 607-617. [94] J. Wang, Y. He, M.F. Maitz, B. Collins, K. Xiong, L. Guo, Y. Yun, G. Wan, N. Huang, A surface-eroding poly(1,3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications:Toward better biofunction, biodegradation and biocompatibility, Acta. Biomater. 9(2013) 8678-8689. [95] F. Gao, Y. Hu, G. Li, S. Liu, L. Quan, Z. Yang, Y. Wei, C. Pan, Layer-by-layer deposition of bioactive layers on magnesium alloy stent materials to improve corrosion resistance and biocompatibility, Bioact. Mater. 5(2020) 611-623. [96] L. Mao, L. Shen, J. Chen, X. Zhang, M. Kwak, Y. Wu, R. Fan, L. Zhang, J. Pei, G. Yuan, C. Song, J. Ge, W. Ding, A promising biodegradable magnesium alloy suitable for clinical vascular stent application, Sci. Rep. 7(2017) 46343. [97] H. Yang, C. Wang, C. Liu, H. Chen, Y. Wu, J. Han, Z. Jia, W. Lin, D. Zhang, W. Li, W. Yuan, H. Guo, H. Li, G. Yang, D. Kong, D. Zhu, K. Takashima, L. Ruan, J. Nie, X. Li, Y. Zheng, Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model, Biomaterials 145(2017) 92-105. [98] X. Qu, H. Yang, Z. Yu, B. Jia, H. Qiao, Y. Zheng, K. Dai, Serum zinc levels and multiple health outcomes:Implications for zinc-based biomaterials, Bioact. Mater. 5(2020) 410-422. [99] P.K. Bowen, R.J. Guillory, E.R. Shearier, J.-M. Seitz, J. Drelich, M. Bocks, F. Zhao, J. Goldman, Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents, Mater. Sci. Eng. C 56(2015) 467-472. [100] P.K. Bowen, E.R. Shearier, S. Zhao, R.J. Guillory Ii, F. Zhao, J. Goldman, J.W. Drelich, Biodegradable metals for cardiovascular stents:From clinical concerns to recent Zn-alloys, Adv. Healthc. Mater. 5(2016) 1121-1140. [101] J. Venezuela, M.S. Dargusch, The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc:A comprehensive review, Acta. Biomater. 87(2019) 1-40. [102] J. Ma, N. Zhao, D. Zhu, Endothelial cellular responses to biodegradable metal zinc, ACS Biomater. Sci. Eng. 1(2015) 1174-1182. [103] E. Mostaed, M. Sikora-Jasinska, J.W. Drelich, M. Vedani, Zinc-based alloys for degradable vascular stent applications, Acta. Biomater. 71(2018) 1-23. [104] S. Farah, W. Khan, A.J. Domb, Crystalline coating of rapamycin onto a stent:process development and characterization, Int. J. Pharm. 445(2013) 20-28. [105] R. Wessely, J. Hausleiter, C. Michaelis, B. Jaschke, M. Vogeser, S. Milz, B. Behnisch, T. Schratzenstaller, M. Renke-Gluszko, M. Stover, E. Wintermantel, A. Kastrati, A. Schomig, Inhibition of neointima formation by a novel drugeluting stent system that allows for dose-adjustable, multiple, and on-site stent coating, Arterioscler, thromb, and vasc. biol. 25(2005) 748-753. [106] W. Chen, T.C.J. Habraken, W.E. Hennink, R.J. Kok, Polymer-free drug-eluting stents:An overview of coating strategies and comparison with polymercoated drug-eluting stents, Bioconjug. Chem. 26(2015) 1277-1288. [107] M. Baquet, D. Jochheim, J. Mehilli, Polymer-free drug-eluting stents for coronary artery disease, J. Interv. Cardiol. 31(2018) 330-337. [108] A.Lansky,W.Wijns,B.Xu,H.Kelbaek,N.vanRoyen,M.Zheng,L.Artus-Jacenko, P. Knaapen, T. Slagboom, G. Vlachojannis, K. Arkenbout, L. Holmvang, L. Janssens, A. Ochala, S. Brugaletta, O. Bruder, S. Berti, E. Barbato, G. Toth, L. Maillard, C. Valina, P. Buszman, T. Johnson, H. Thiele, A. Baumbach, TCT-624 A prospective multicenter randomized post-market trial evaluating a novel Cobaltchrome rapamycindrug elutingstent:Subgroup analysis oftheTARGET all comers trial, J. Am. Coll. Cardiol. 72(2018) B249-B250. [109] A. Lansky, W. Wijns, B. Xu, H. Kelbæk, N. van Royen, M. Zheng, M.-A. Morel, P. Knaapen, T. Slagboom, T.W. Johnson, G. Vlachojannis, K.E. Arkenbout, L. Holmvang, L. Janssens, A. Ochala, S. Brugaletta, C.K. Naber, R. Anderson, H. Rittger, S. Berti, E. Barbato, G.G. Toth, L. Maillard, C. Valina, P. Buszman, H. Thiele, V. Schächinger, A. Baumbach, Targeted therapy with a localised abluminal groove, low-dose sirolimus-eluting, biodegradable polymer coronary stent (Target all comers):A multicentre, open-label, randomised non-inferiority trial, Lancet. 392(2018) 1117-1126. [110] A. de Mel, F. Murad, A.M. Seifalian, Nitric oxide:A guardian for vascular grafts?, Chem Rev. 111(2011) 5742-5767. [111] C. Bogdan, Nitric oxide and the immune response, Nat. Immunol. 2(10) (2001) 907. [112] D. Cohn, A. Sloutski, A. Elyashiv, V.B. Varma, R. Ramanujan, In situ generated medical devices, Adv. Healthc. Mater. 8(2019) 1801066. [113] X. Li, J. Liu, T. Yang, H. Qiu, L. Lu, Q. Tu, K. Xiong, N. Huang, Z. Yang, Musselinspired "built-up" surface chemistry for combining nitric oxide catalytic and vascular cell selective properties, Biomaterials 241(2020) 119904. [114] Z. Yang, X. Zhao, R. Hao, Q. Tu, X. Tian, Y. Xiao, K. Xiong, M. Wang, Y. Feng, N. Huang, G. Pan, Bioclickable and mussel adhesive peptide mimics for engineering vascular stent surfaces, Proc. Natl. Acad. Sci. 117(2020) 16127. [115] M. Kushwaha, J.M. Anderson, C.A. Bosworth, A. Andukuri, W.P. Minor, J.R. Lancaster, P.G. Anderson, B.C. Brott, H.-W. Jun, A nitric oxide releasing, self assembled peptide amphiphile matrix that mimics native endothelium for coating implantable cardiovascular devices, Biomaterials 31(2010) 1502-1508. [116] H. Qiu, P. Qi, J. Liu, Y. Yang, X. Tan, Y. Xiao, M.F. Maitz, N. Huang, Z. Yang, Biomimetic engineering endothelium-like coating on cardiovascular stent through heparin and nitric oxide-generating compound synergistic modification strategy, Biomaterials 207(2019) 10-22. [117] L. Jiang, H. Yao, X. Luo, D. Zou, C. Han, C. Tang, Y. He, P. Yang, J. Chen, A. Zhao, N. Huang, Copper-mediated synergistic catalytic titanium dioxide nanofilm with nitric oxide generation and anti-protein fouling for enhanced hemocompatibility and inflammatory modulation, Appl. Mater. Today 20(2020) 100663. [118] L.G. Melo, M. Gnecchi, A.S. Pachori, D. Kong, K. Wang, X. Liu, R.E. Pratt, V.J. Dzau, Endothelium-targeted gene and cell-based therapies for cardiovascular disease, Arterioscler, thromb, and vasc. biol. 24(2004) 1761-1774. [119] N. Kipshidze, G. Dangas, M. Tsapenko, J. Moses, M.B. Leon, M. Kutryk, P. Serruys, Role of the endothelium in modulating neointimal formation:Vasculoprotective approaches to attenuate restenosis after percutaneous coronary interventions, J. Am. Coll. Cardiol. 44(2004) 733-739. [120] H.-K. Chang, P.-H. Kim, D.W. Kim, H.-M. Cho, M.J. Jeong, D.H. Kim, Y.K. Joung, K.S. Lim, H.B. Kim, H.C. Lim, D.K. Han, Y.J. Hong, J.-Y. Cho, Coronary stents with inducible VEGF/HGF-secreting UCB-MSCs reduced restenosis and increased re-endothelialization in a swine model, Exp. Mol. Med. 50(2018) 114. [121] S.A. Biela, Y. Su, J.P. Spatz, R. Kemkemer, Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range, Acta. Biomater. 5(2009) 2460-2466. [122] C.Y. Liang, H.S. Wang, Y. Yang, J.J. Yang, G.F. Chen, C.Y. Li, In-situ growth of Ca/P salt on Ti surface induced by femtosecond lasers in hydroxyapatite suspension, Chin. Phys. B 19(2010) 094208. [123] I.H. Bae, M.H. Jeong, K.S. Lim, D.S. Park, J.W. Shim, J.K. Park, K.H. Oh, M.R. Jin, D.S. Sim, Novel polymer-free everolimus-eluting stent fabricated using femtosecond laser improves re-endothelialization and anti-inflammation, Sci. Rep. 8(2018) 7383. [124] C. Liang, Y. Hu, H. Wang, D. Xia, Q. Li, J. Zhang, J. Yang, B. Li, H. Li, D. Han, M. Dong, Biomimetic cardiovascular stents for in vivo re-endothelialization, Biomaterials 103(2016) 170-182. [125] K. Bito, T. Hasebe, S. Maegawa, T. Kitagawa, T. Matsumoto, T. Suzuki, A. Hotta, Micropatterning of a 2-methacryloyloxyethyl phosphorylcholine polymer surface by hydrogenated amorphous carbon thin films for endothelialization and antithrombogenicity, Acta. Biomater. 87(2019) 187-196. [126] N. Marinval, M. Morenc, M.N. Labour, A. Samotus, A. Mzyk, V. Ollivier, M. Maire, K. Jesse, K. Bassand, A. Niemiec-Cyganek, O. Haddad, M.P. Jacob, F. Chaubet, N. Charnaux, P. Wilczek, H. Hlawaty, Fucoidan/VEGF-based surface modification of decellularized pulmonary heart valve improves the antithrombotic and re-endothelialization potential of bioprostheses, Biomaterials 172(2018) 14-29. [127] J. Tan, Y. Cui, Z. Zeng, L. Wei, L. Li, H. Wang, H. Hu, T. Liu, N. Huang, J. Chen, Y. Weng, Heparin/poly-l-lysine nanoplatform with growth factor delivery for surface modification of cardiovascular stents:The influence of vascular endothelial growth factor loading, J. Biomed. Mater. Res. A 108(2020) 1295-1304. [128] H. Yao, J. Li, N. Li, K. Wang, X. Li, J. Wang, Surface modification of cardiovascular stent material 316L SS with estradiol-loaded poly (trimethylene carbonate) film for better biocompatibility, Polymers 9(2017) 598. [129] Y. Zhao, R. Du, T. Zhou, D. Yang, Y. Huang, Y. Wang, J. Huang, X. Ma, F. He, J. Qiu, G. Wang, Arsenic trioxide-coated stent is an endothelium-friendly drug eluting stent, Adv. Healthc. Mater. 7(2018) 1800207. [130] C.-H. Lee, M.-J. Hsieh, S.-H. Chang, K.-C. Hung, C.-J. Wang, M.-Y. Hsu, J.-H. Juang, I.C. Hsieh, M.-S. Wen, S.-J. Liu, Nanofibrous vildagliptin-eluting stents enhance re-endothelialization and reduce neointimal formation in diabetes:in vitro and in vivo, Int. J. Nanomedicine 14(2019) 7503-7513. [131] Y. Mitsutake, T. Ueno, S. Yokoyama, K. Sasaki, Y. Sugi, Y. Toyama, H. Koiwaya, M. Ohtsuka, T. Nakayoshi, N. Itaya, H. Chibana, T. Kakuma, T. Imaizumi, Coronary endothelial dysfunction distal to stent of first-generation drugeluting stents, JACC Cardiovasc. interv. 5(2012) 966-973. [132] K. Tanabe, W. Serruys Patrick, M. Degertekin, E. Grube, G. Guagliumi, W. Urbaszek, J. Bonnier, J.-M. Lablanche, T. Siminiak, J. Nordrehaug, H. Figulla, J. Drzewiecki, A. Banning, K. Hauptmann, D. Dudek, N. Bruining, R. Hamers, A. Hoye, M.R. Ligthart Jurgen, C. Disco, J. Koglin, E. Russell Mary, A. Colombo, Incomplete stent apposition after implantation of paclitaxel-eluting stents or bare metal stents, Circulation 111(2005) 900-905. [133] Cornelissen A., Vogt F.J., The effects of stenting on coronary endothelium from a molecular biological view:Time for improvement? J. Cell Mol. Med. 23(2019) 39-46. [134] K. Wulf, M. Teske, C. Matschegewski, D. Arbeiter, D. Bajer, T. Eickner, K.-P. Schmitz, N. Grabow, Novel approach for a PTX/VEGF dual drug delivery system in cardiovascular applications-an innovative bulk and surface drug immobilization, Drug Deliv. Transl. Re 8(2018) 719-728. [135] R.A. Byrne, J. Mehilli, R. Iijima, S. Schulz, J. Pache, M. Seyfarth, A. Schömig, A. Kastrati, S. for the intracoronary, S. angiographic results:test efficacy of 3 limus-eluting, a polymer-free dual drug-eluting stent in patients with coronary artery disease:A randomized trial vs. polymer-based drug-eluting stents, Eur. Heart. J., 30(2009) 923-931. [136] Y. Huang, S.S. Venkatraman, F.Y.C. Boey, E.M. Lahti, P.R. Umashankar, M. Mohanty, S. Arumugam, L. Khanolkar, S. Vaishnav, In vitro and in vivo performance of a dual drug-eluting stent (DDES), Biomaterials 31(2010) 4382-4391. [137] B. Zhang, B. Zheng, X. Wang, Q. Shi, J. Jia, Y. Huo, C. Pan, J. Han, M. Chen, Polymer-free dual drug-eluting stents evaluated in a porcine model, BMC Cardiovasc. Disord. 17(2017) 222. [138] P. Roopmani, S. Satheesh, D.C. Raj, U.M. Krishnan, Development of dual drug eluting cardiovascular stent with ultrathin flexible poly(l-lactide-cocaprolactone) coating, ACS Biomater. Sci. Eng. 5(2019) 2899-2915. [139] R. Du, Y. Wang, Y. Huang, Y. Zhao, D. Zhang, D. Du, Y. Zhang, Z. Li, S. McGinty, G. Pontrelli, T. Yin, G. Wang, Design and testing of hydrophobic core/hydrophilic shell nano/micro particles for drug-eluting stent coating, NPG Asia Mater. 10(2018) 642-658. [140] W.J. Van Der Giessen, P.W. Serruys, W.J. Visser, P.D. Verdouw, W.P. Van Schalkwijk, J.F. Jongkind, Endothelialization of intravascular stents, J. Interv. Cardiol. 1(1988) 109-120. [141] M. Conte, G. VanMeter, L. Akst, T. Clemons, M. Kashgarian, J. Bender, Endothelial cell seeding influences lesion development following arterial injury in the cholesterol-fed rabbit, Cardiovasc. Res. 53(2002) 502-511. [142] X. Wu, Y. Zhao, C. Tang, T. Yin, R. Du, J. Tian, J. Huang, H. Gregersen, G. Wang, Re-endothelialization study on endovascular stents seeded by endothelial cells through up-or downregulation of VEGF, ACS Appl. Mater. Interfaces 8(2016) 7578-7589. [143] X. Wu, G. Wang, C. Tang, D. Zhang, Z. Li, D. Du, Z. Zhang, Mesenchymal stem cell seeding promotes reendothelialization of the endovascular stent, J. Biomed. Mater. Res. A 98(2011) 442-449. [144] J. Tsukada, F. Wolf, F. Vogt, N. Schaaps, S. Thoröe-Boveleth, H. Keijdener, J. Jankowski, H. Tsukada, S. Jockenhövel, M. Jinzaki, T. Schmitz-Rode, P. Mela, Development of in vitro endothelialized drug-eluting stent using human peripheral blood-derived endothelial progenitor cells, J. Tissue Eng. Regen. Med., n/a (2020) 1415-1427. [145] N. Kipshidze, J.J. Ferguson, M.H. Keelan, H. Sahota, R. Komorowski, L.R. Shankar, P.S. Chawla, C.C. Haudenschild, V. Nikolaychik, J.W. Moses, Endoluminal reconstruction of the arterial wall with endothelial cell/glue matrix reduces restenosis in an atherosclerotic rabbit, J. Am. Coll. Cardiol. 36(2000) 1396-1403. [146] B. Polyak, M. Medved, N. Lazareva, L. Steele, T. Patel, A. Rai, M.Y. Rotenberg, K. Wasko, A.R. Kohut, R. Sensenig, G. Friedman, Magnetic nanoparticlemediated targeting of cell therapy reduces in-stent stenosis in injured arteries, ACS Nano 10(2016) 9559-9569. [147] D.H. Walter, K. Rittig, F.H. Bahlmann, R. Kirchmair, M. Silver, T. Murayama, H. Nishimura, D.W. Losordo, T. Asahara, J.M. Isner, Statin therapy accelerates reendothelialization, Circulation 105(2002) 3017-3024. [148] N. Werner, S. Kosiol, T. Schiegl, P. Ahlers, K. Walenta, A. Link, M. Böhm, G. Nickenig, Circulating endothelial progenitor cells and cardiovascular outcomes, New. Engl. J. Med. 353(2005) 999-1007. [149] H.J. Duckers, S. Silber, R.d. Winter, P.d. Heijer, B. Rensing, M. Rau, H. Mudra, E. Benit, S. Verheye, W. Wijns, P.W. Serruys, Circulating endothelial progenitor cells predict angiographic and intravascular ultrasound outcome following percutaneous coronary interventions in the HEALING-II trial:evaluation of an endothelial progenitor cell capturing stent, EuroIntervention 3(2007) 67-75. [150] S. Silber, P. Damman, M. Klomp, Clinical results after coronary stenting with the GenousTM bio-engineered R stentTM:12-month outcomes of the eHEALING (healthy endothelial accelerated lining inhibits neointimal growth) worldwide registry, EuroIntervention 6(2011) 819-852. [151] K. Nakamura, L.S. Dean, Long-term clinical observations for a biofunctionalized stent:Yet to deliver their theoretical benefits, Catheter Cardiovasc Interv 91(2018) 1219-1220. [152] K. Yamaji, T. Kimura, COMBOdual-therapy stent:non-inferior to drug-eluting stents or stepping back to bare metal stents?, Eur Heart J 39(2018) 2469-2471 [153] D.N. Kalkman, Dual-therapy stent technology for patients with coronary artery disease, Minerva Cardioangiol. 10(2018) 180-198. [154] L.-C. Su, H. Xu, R.T. Tran, Y.-T. Tsai, L. Tang, S. Banerjee, J. Yang, K.T. Nguyen, In situ Re-endothelialization via multifunctional nanoscaffolds, ACS Nano 8(2014) 10826-10836. [155] M. Wawrzynska, M. Duda, E. Wysokinska, L. Strzadala, D. Bialy, A. UlatowskaJarza, W. Kalas, S. Kraszewski, R. Paslawski, P. Biernat, U. Paslawska, A. Zielonka, H. Podbielska, M. Kopaczynska, Functionalized CD133 antibody coated stent surface simultaneously promotes EPCs adhesion and inhibits smooth muscle cell proliferation-A novel approach to prevent in-stent restenosis, Colloids Surf. B 174(2018) 587-597. [156] K.-S. Park, S.N. Kang, D.H. Kim, H.-B. Kim, K.S. Im, W. Park, Y.J. Hong, D.K. Han, Y.K. Joung, Late endothelial progenitor cell-capture stents with CD146 antibody and nanostructure reduce in-stent restenosis and thrombosis, Acta Biomater. 111(2020) 91-101. [157] C. Wen, J. Zhang, Y. Li, W. Zheng, M. Liu, Y. Zhu, X. Sui, X. Zhang, Q. Han, Y. Lin, J. Yang, L. Zhang, Zwitterionic hydrogel coated titanium surface with highefficiency endothelial cell selectivity for rapid re-endothelialization, Biomater. Sci. (2020) 5441-5451. [158] S. Ylä-Herttuala, J.F. Martin, Cardiovascular gene therapy, Lancet. 355(2000) 213-222. [159] B.D. Klugherz, P.L. Jones, X. Cui, Gene delivery from a DNA controlled-release stent in porcine coronary arteries, Nat. Biotechnol. 18(2000) 1181-1184. [160] M.Y. Adeel, F. Sharif, Advances in stent-mediated gene delivery, Expert Opin. Drug Deliv. 13(2016) 465-468. [161] A. Takahashi, M. Palmer-Opolski, R. Smith, K. Walsh, Transgene delivery of plasmid DNA to smooth muscle cells and macrophages from a biostable polymer-coated stent, Gene. Ther. 10(2003) 1471-1478. [162] J.P. Hytonen, J. Taavitsainen, J.T.T. Laitinen, A. Partanen, K. Alitalo, O. Leppanen, S. Yla-Herttuala, Local adventitial anti-angiogenic gene therapy reduces growth of vasa-vasorum and in-stent restenosis in WHHL rabbits, J. Mol. Cell Cardiol. 121(2018) 145-154. [163] B. Hooshdaran, B. Pressly Ben, I. Alfriev, L. Wilensky Robert, C. Gorman Robert, S.J. D, S. Hazen, L.R. J, I. Fishbein, Abstract 126:Stent-based gene therapy of restenosis with an oxidation-resistant apolipoprotein A1 mutant, Arterioscler, thromb, and vasc. biol. 39(2019) A126-A126. [164] D.H. Walter, M. Cejna, L. Diaz-Sandoval, S. Willis, L. Kirkwood, P.W. Stratford, A.B. Tietz, R. Kirchmair, M. Silver, C. Curry, A. Wecker, Y.S. Yoon, R. Heidenreich, A. Hanley, M. Kearney, F.O. Tio, P. Kuenzler, J.M. Isner, D.W. Losordo, Local gene transfer of phVEGF-2 plasmid by gene-eluting stents:An alternative strategy for inhibition of restenosis, Circulation 110(2004) 36-45. [165] M.H. Kural, J. Wang, L. Gui, Y. Yuan, G. Li, K.L. Leiby, E. Quijano, G. Tellides, W. M. Saltzman, L.E. Niklason, Fas ligand and nitric oxide combination to control smooth muscle growth while sparing endothelium, Biomaterials 212(2019) 28-38. [166] H. Zhai, X. Qi, Z. Li, W. Zhang, C. Li, L. Ji, K. Xu, H. Zhong, TIMP-3 suppresses the proliferation and migration of SMCs from the aortic neck of atherosclerotic AAA in rabbits, via decreased MMP-2 and MMP-9 activity, and reduced TNF-a expression, Mol. Med. Rep. 18(2018) 2061-2067. [167] M.-J. Goumans, P. ten Dijke, TGF-b signaling in control of cardiovascular function, Cold Spring Harb. Perspect. Biol. 10(2018) a022210. [168] K. Egashira, K. Nakano, K. Ohtani, K. Funakoshi, G. Zhao, Y. Ihara, J.-I. Koga, S. Kimura, R. Tominaga, K. Sunagawa, Local delivery of anti-monocyte chemoattractant protein-1 by gene-eluting stents attenuates in-stent stenosis in rabbits and monkeys, Arterioscler, Thromb, and Vasc. Biol. 27(2007) 2563-2568. [169] H. Zhang, K.F. Ren, H. Chang, J.L. Wang, J. Ji, Surface-mediated transfection of a pDNA vector encoding short hairpin RNA to downregulate TGF-beta1 expression for the prevention of in-stent restenosis, Biomaterials 116(2017) 95-105. [170] F. Sharif, S.O. Hynes, K.J.A. McCullagh, S. Ganley, U. Greiser, P. McHugh, J. Crowley, F. Barry, T. O'Brien, Gene-eluting stents:non-viral, liposome-based gene delivery of eNOS to the blood vessel wall in vivo results in enhanced endothelialization but does not reduce restenosis in a hypercholesterolemic model, Gene. Ther. 19(2012) 321-328. [171] J. Yang, Y. Zeng, C. Zhang, Y.X. Chen, Z. Yang, Y. Li, X. Leng, D. Kong, X.Q. Wei, H.F. Sun, C.X. Song, The prevention of restenosis in vivo with a VEGF gene and paclitaxel co-eluting stent, Biomaterials 34(2013) 1635-1643. [172] W. Ye, Y. Chen, W. Tang, N. Zhang, Z. Li, Z. Liu, B. Yu, F.-J. Xu, Reductionresponsive nucleic acid delivery systems to prevent in-stent restenosis in rabbits, ACS Appl. Mater. Interfaces 11(2019) 28307-28316. [173] L. Bai, J. Zhao, M. Wang, Y. Feng, J. Ding, Matrix-metalloproteinase-responsive gene delivery surface for enhanced in situ endothelialization, ACS Appl. Mater. Interfaces (2020) 40121-40132. [174] A.C. Newby, Matrix metalloproteinase inhibition therapy for vascular diseases, Vascul. Pharmacol. 56(2012) 232-244. [175] S. Hall, D.K. Agrawal, Delivery of viral vectors for gene therapy in intimal hyperplasia and restenosis in atherosclerotic swine, Drug Deliv. Transl. Re 8(2018) 918-927. [176] U. Förstermann, N. Xia, H. Li, Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis, Circ. Res. 120(2017) 713-735. [177] I. Fishbein, I. Alferiev, M. Bakay, S.J. Stachelek, P. Sobolewski, M. Lai, H. Choi, I. W. Chen, R.J. Levy, Local delivery of gene vectors from bare-metal stents by use of a biodegradable synthetic complex inhibits in-stent restenosis in rat carotid arteries, Circulation 117(2008) 2096-2103. [178] D. Chen, B. Murphy, R. Sung, J.S. Bromberg, Adaptive and innate immune responses to gene transfer vectors:role of cytokines and chemokines in vector function, Gene. Ther. 10(2003) 991-998. [179] S. Vosen, S. Rieck, A. Heidsieck, O. Mykhaylyk, K. Zimmermann, W. Bloch, D. Eberbeck, C. Plank, B. Gleich, A. Pfeifer, B.K. Fleischmann, D. Wenzel, Vascular repair by circumferential cell therapy using magnetic nanoparticles and tailored magnets, ACS Nano 10(2016) 369-376. [180] I. Fishbein, D.T. Guerrero, I.S. Alferiev, J.B. Foster, N.G. Minutolo, M. Chorny, A. M. Monteys, K.H. Driesbaugh, C. Nagaswami, R.J. Levy, Stent-based delivery of adeno-associated viral vectors with sustained vascular transduction and iNOS-mediated inhibition of in-stent restenosis, Gene. Ther. 24(2017) 717-726. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||