[1] A. Cho, Helium-3 shortage could put freeze on low-temperature research, Science 326(5954) (2009) 778-779. [2] A.W. Hauser, P. Schwerdtfeger, Nanoporous graphene membranes for efficient 3He/4He separation, J. Phys. Chem. Lett. 3(2) (2012) 209-213. [3] W.J. Nuttall, R.H. Clarke, B.A. Glowacki, Stop squandering helium, Nature 485(7400) (2012) 573-575. [4] K.H. Kaplan, Helium shortage hampers research and industry, Phys. Today 60(6) (2007) 31-32. [5] National Research Council, The National Academy of Sciences, Selling the Nation's Helium Reserve, National Academies Press, Washington, D.C., 2010. [6] P. Pandey, R.S. Chauhan, Membranes for gas separation, Prog. Polym. Sci. 26(6) (2001) 853-893. [7] Z.P. Smith, R.R. Tiwari, M.E. Dose, K.L. Gleason, T.M. Murphy, D.F. Sanders, G. Gunawan, L.M. Robeson, D.R. Paul, B.D. Freeman, Influence of diffusivity and sorption on helium and hydrogen separations in hydrocarbon, silicon, and fluorocarbon-based polymers, Macromolecules 47(9) (2014) 3170-3184. [8] Y. Jiao, A.J. Du, M. Hankel, S.C. Smith, Modelling carbon membranes for gas and isotope separation, Phys. Chem. Chem. Phys. 15(14) (2013) 4832-4843. [9] N.K. Das, H. Chaudhuri, R.K. Bhandari, D. Ghose, B. Sinha, Purification of helium from natural gas by pressure swing adsorption, Curr. Sci. 95(12) (2008) 1684-1687. [10] H.E. Hall, P.J. Ford, K. Thompson, A helium-3 dilution refrigerator, Cryogenics 6(2) (1966) 80-88. [11] T.E. Rufford, K. Ida Chan, S.H. Huang, E.F. May, A review of conventional and emerging process technologies for the recovery of helium from natural gas, Adsorpt. Sci. Technol. 32(1) (2014) 49-72. [12] C.A. Scholes, U. Ghosh, Helium separation through polymeric membranes:Selectivity targets, J. Membr. Sci. 520(2016) 221-230. [13] S.S. Hosseini, M.M. Teoh, T.S. Chung, Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks, Polymer 49(6) (2008) 1594-1603. [14] Y.J. Ji, H.L. Dong, H.P. Lin, L.L. Zhang, T.J. Hou, Y.Y. Li, Heptazine-based graphitic carbon nitride as an effective hydrogen purification membrane, RSC Adv. 6(57) (2016) 52377-52383. [15] Y. Jiao, A.J. Du, M. Hankel, Z.H. Zhu, V. Rudolph, S.C. Smith, Graphdiyne:A versatile nanomaterial for electronics and hydrogen purification, Chem. Commun. 47(43) (2011) 11843-11845. [16] J. Schrier, Carbon dioxide separation with a two-dimensional polymer membrane, ACS Appl. Mater. Interfaces 4(7) (2012) 3745-3752. [17] A. Kasik, X.L. Dong, Y.S. Lin, Synthesis and stability of zeolitic imidazolate framework-68 membranes, Microporous Mesoporous Mater. 204(2015) 99-105. [18] N. Kosinov, C. Auffret, C. Gücüyener, B.M. Szyja, J. Gascon, F. Kapteijn, E.J.M. Hensen, High flux high-silica SSZ-13 membrane for CO2 separation, J. Mater. Chem. A 2(32) (2014) 13083-13092. [19] Y. Yampolskii, Polymeric gas separation membranes, Macromolecules 45(8) (2012) 3298-3311. [20] L. Prozorovska, P.R. Kidambi, State-of-the-art and future prospects for atomically thin membranes from 2D materials, Adv. Mater. 30(52) (2018) e1801179. [21] L.D. Wang, M.S.H. Boutilier, P.R. Kidambi, D. Jang, N.G. Hadjiconstantinou, R. Karnik, Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes, Nat. Nanotechnol. 12(6) (2017) 509-522. [22] M. Liu, P.A. Gurr, Q. Fu, P.A. Webley, G.G. Qiao, Two-dimensional nanosheetbased gas separation membranes, J. Mater. Chem. A 6(46) (2018) 23169-23196. [23] G.P. Liu, W.Q. Jin, N.P. Xu, Two-dimensional-material membranes:A new family of high-performance separation membranes, Angew. Chem. Int. Ed. 55(43) (2016) 13384-13397. [24] Y.H. Tao, Q.Z. Xue, Z.L. Liu, M.X. Shan, C.C. Ling, T.T. Wu, X.F. Li, Tunable hydrogen separation in porous graphene membrane:First-principle and molecular dynamic simulation, ACS Appl. Mater. Interfaces 6(11) (2014) 8048-8058. [25] M. Vanin, J. Gath, K.S. Thygesen, K.W. Jacobsen, First-principles calculations of graphene nanoribbons in gaseous environments:Structural and electronic properties, Phys. Rev. B 82(19) (2010) 195411. [26] O. Lehtinen, J. Kotakoski, A.V. Krasheninnikov, A. Tolvanen, K. Nordlund, J. Keinonen, Effects of ion bombardment on a two-dimensional target:Atomistic simulations of graphene irradiation, Phys. Rev. B 81(15) (2010) 153401. [27] X. Chang, L. Zhu, Q.Z. Xue, X. Li, T.C. Guo, X.F. Li, M. Ma, Charge controlled switchable CO2/N2 separation for g-C10N9 membrane:Insights from molecular dynamics simulations, J. CO2 Util. 26(2018) 294-301. [28] B. Xu, H. Xiang, Q. Wei, J.Q. Liu, Y.D. Xia, J. Yin, Z.G. Liu, Two-dimensional graphene-like C2N:An experimentally available porous membrane for hydrogen purification, Phys. Chem. Chem. Phys. 17(23) (2015) 15115-15118. [29] Z.R. Wang, H.L. Dong, X.H. Yu, Y.J. Ji, T.J. Hou, Y.Y. Li, Two-dimensional porous polyphthalocyanine (PPc) as an efficient gas-separation membrane for ammonia synthesis, Curr. Appl. Phys. 17(12) (2017) 1765-1770. [30] Z.N. Ma, X.D. Zhao, Q. Tang, Z. Zhou, Computational prediction of experimentally possible g-C3N3 monolayer as hydrogen purification membrane, Int. J. Hydrog. Energy 39(10) (2014) 5037-5042. [31] Z.Q. Chu, X. Gu, X.M. Duan, High efficiency hydrogen purification through P2C3 membrane:A theoretical study, Chinese Phys. B 28(12) (2019) 128703. [32] L. Zhu, Q.Z. Xue, X.F. Li, T.T. Wu, Y.K. Jin, W. Xing, C2N:An excellent twodimensional monolayer membrane for He separation, J. Mater. Chem. A 3(42) (2015) 21351-21356. [33] X.F. Liu, X. Chang, L. Zhu, X.F. Li, High-efficiency helium separation through g-C2O membrane:A theoretical study, Comput. Mater. Sci. 157(2019) 1-5. [34] F. Li, Y.Y. Qu, M.W. Zhao, Efficient helium separation of graphitic carbon nitride membrane, Carbon 95(2015) 51-57. [35] Y.C. Rao, Z.Q. Chu, X. Gu, X.M. Duan, Theoretical design of a strain-controlled nanoporous CN membrane for helium separation, Comput. Mater. Sci. 161(2019) 53-57. [36] H. Sun, COMPASS:An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds, J. Phys. Chem. B 102(38) (1998) 7338-7364. [37] Z.L. Liu, Q.Z. Xue, W. Xing, Y.G. Du, Z.D. Han, Self-assembly of C4H-type hydrogenated graphene, Nanoscale 5(22) (2013) 11132-11138. [38] B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys. 92(1) (1990) 508-517. [39] B. Delley, From molecules to solids with the DMol3a pproach, J. Chem. Phys. 113(18) (2000) 7756-7764. [40] E.R. McNellis, J. Meyer, K. Reuter, Azobenzene at coinage metal surfaces:Role of dispersive van der Waals interactions, Phys. Rev. B 80(20) (2009) 205414. [41] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18) (1996) 3865-3868. [42] Z.L. Liu, Q.Z. Xue, T. Zhang, Y.H. Tao, C.C. Ling, M.X. Shan, Carbon doping of hexagonal boron nitride by using CO molecules, J. Phys. Chem. C 117(18) (2013) 9332-9339. [43] H.S. Li, H.Q. Hu, C.J. Bao, J. Hua, H.C. Zhou, X.B. Liu, X.D. Liu, M.W. Zhao, Tensile strain induced half-metallicity in graphene-like carbon nitride, Phys. Chem. Chem. Phys. 17(8) (2015) 6028-6035. [44] Y.F. Li, Y.L. Liao, Z.F. Chen, Be(2)C monolayer with quasi-planar hexacoordinate carbons:A global minimum structure, Angew. Chem. Int. Ed. 53(28) (2014) 7248-7252. [45] Y. Wang, J.P. Li, Q.Y. Yang, C.L. Zhong, Two-dimensional covalent triazine framework membrane for helium separation and hydrogen purification, ACS Appl. Mater. Interfaces 8(13) (2016) 8694-8701. [46] W. Hu, X.J. Wu, Z.Y. Li, J.L. Yang, Porous silicene as a hydrogen purification membrane, Phys. Chem. Chem. Phys. 15(16) (2013) 5753-5757. [47] H.L. Du, J.Y. Li, J. Zhang, G. Su, X.Y. Li, Y.L. Zhao, Separation of hydrogen and nitrogen gases with porous graphene membrane, J. Phys. Chem. C 115(47) (2011) 23261-23266. [48] S.W. Deng, H. Hu, G.L. Zhuang, X. Zhong, J.G. Wang, A strain-controlled C2N monolayer membrane for gas separation in PEMFC application, Appl. Surf. Sci. 441(2018) 408-414. [49] N. Sathishkumar, S.Y. Wu, H.T. Chen, Charge-modulated/electric-field controlled reversible CO2/H2 capture and storage on metal-free N-doped penta-graphene, Chem. Eng. J. 391(2020) 123577. [50] S. Arrhenius, Über Die Reaktionsgeschwindigkeit Bei der Inversion von Rohrzucker durch Säuren, Zeitschrift Für Physikalische Chemie 4(1) (1889) 226-248. [51] Y.F. Li, Z. Zhou, P.W. Shen, Z.F. Chen, Two-dimensional polyphenylene:Experimentally available porous graphene as a hydrogen purification membrane, Chem. Commun. 46(21) (2010) 3672-3674. [52] S. Blankenburg, M. Bieri, R. Fasel, K. Müllen, C.A. Pignedoli, D. Passerone, Porous graphene as an atmospheric nanofilter, Small 6(20) (2010) 2266-2271. [53] M. Bartolomei, E. Carmona-Novillo, M.I. Hernández, J. Campos-Martínez, F. Pirani, G. Giorgi, Graphdiyne pores:"Ad Hoc" openings for helium separation applications, J. Phys. Chem. C 118(51) (2014) 29966-29972. |