[1] M. Ishida, M. Yamamoto, T. Ohba, Experimental results of chemical-looping combustion with NiO/NiAl2O4 particle circulation at 1200℃, Energy Convers. Manag. 43(9-12) (2002) 1469-1478. [2] L.F. de Diego, P. Gayán, F. García-Labiano, J. Celaya, A. Abad, J. Adánez, Impregnated CuO/Al2O3 oxygen carriers for chemical-looping combustion:Avoiding fluidized bed agglomeration, Energy Fuels 19(5) (2005) 1850-1856. [3] L.F. de Diego, F. García-Labiano, J. Adánez, P. Gayán, A. Abad, B.M. Corbella, J. María Palacios, Development of Cu-based oxygen carriers for chemical-looping combustion, Fuel 83(13) (2004) 1749-1757. [4] P. Cho, T. Mattisson, A. Lyngfelt, Carbon formation on nickel and iron oxidecontaining oxygen carriers for chemical-looping combustion, Ind. Eng. Chem. Res. 44(4) (2005) 668-676. [5] J. Adánez, L.F. de Diego, F. García-Labiano, P. Gayán, A. Abad, J.M. Palacios, Selection of oxygen carriers for chemical-looping combustion, Energy Fuels 18(2) (2004) 371-377. [6] Y. Kang, M. Tian, Y. Wang, Y. Wang, C. Huang, Y. Zhu, L. Li, G. Wang, X. Wang, Silica modified alumina as supports of Fe2O3 with high performance in chemical looping combustion of methane, ACS Sustainable Chem. Eng. 6(2018) 12884-12892. [7] M. Tian, C. Wang, L. Li, X. Wang, High performance of la-promoted Fe2O3/α-Al2O3 oxygen carrier for chemical looping combustion, AIChE J. 63(2017) 2827-2838. [8] H. Leion, T. Mattisson, A. Lyngfelt, Solid fuels in chemical-looping combustion, Int. J. Greenh. Gas Control. 2(2) (2008) 180-193. [9] Y. Cao, W.P. Pan, Investigation of chemical looping combustion by solid fuels. 1. Process analysis, Energy Fuels 20(2006) 1836-1844. [10] R. Siriwardane, H.J. Tian, G. Richards, T. Simonyi, J. Poston, Chemical-looping combustion of coal with metal oxide oxygen carriers, Energy Fuels 23(8) (2009) 3885-3892. [11] N. Berguerand, A. Lyngfelt, Design and operation of a 10 kWth chemicallooping combustor for solid fuels-Testing with South African coal, Fuel 87(12) (2008) 2713-2726. [12] H. Leion, T. Mattisson, A. Lyngfelt, The use of petroleum coke as fuel in chemical-looping combustion, Fuel 86(12-13) (2007) 1947-1958. [13] A.L. Tobias Mattisson, Henrik Leion, Chemical-looping with oxygen uncoupling for combustion of solid fuels, Int. J. Greenhouse Gas Control 3(2009) 11-19. [14] P. Wang, N. Means, B.H. Howard, D. Shekhawat, D. Berry, The reactivity of CuO oxygen carrier and coal in chemical-looping with oxygen uncoupled (CLOU) and in-situ gasification chemical-looping combustion (iG-CLC), Fuel 217(2018) 642-649. [15] X. Tian, Y.J. Wei, H.B. Zhao, Using a hierarchically-structured CuO@TiO2-Al2O3 oxygen carrier for chemical looping air separation in a paralleled fluidized bed reactor, Chem. Eng. J. 334(2018) 611-618. [16] N.C. Means, W.A. Burgess, B.H. Howard, M.W. Smith, P. Wang, D. Shekhawat, Examining and modeling oxygen uncoupling kinetics of Cu-based oxygen carriers for chemical looping with oxygen uncoupling (CLOU) in a drop tube fluidized bed reactor, Energy Fuels 33(6) (2019) 5610-5619. [17] A. Zylka, J. Krzywanski, T. Czakiert, K. Idziak, M. Sosnowski, K. Grabowska, T. Prauzner, W. Nowak, The 4th Generation of CeSFaMB in numerical simulations for CuO-based oxygen carrier in CLC system, Fuel 255(2019) 115776. [18] M.A. San Pio, M. Martini, F. Gallucci, I. Roghair, M. van Sint Annaland, Kinetics of CuO/SiO2 and CuO/Al2O3 oxygen carriers for chemical looping combustion, Chem. Eng. Sci. 175(2018) 56-71. [19] Z.L. Yu, C.Y. Li, X.L. Jing, Q. Zhang, Z.Q. Wang, Y.T. Fang, J.J. Huang, Catalytic chemical looping combustion of carbon with an iron-based oxygen carrier modified by K2CO3:Catalytic mechanism and multicycle tests, Fuel Process. Technol. 135(2015) 119-124. [20] K. Wang, Q.B. Yu, Q. Qin, Z.L. Zuo, T.W. Wu, Evaluation of Cu-based oxygen carrier for chemical looping air separation in a fixed-bed reactor, Chem. Eng. J. 287(2016) 292-301. [21] I. Adánez-Rubio, P. Gayán, A. Abad, L.F. de Diego, F. García-Labiano, J. Adánez, Evaluation of a spray-dried CuO/MgAl2O4 oxygen carrier for the chemical looping with oxygen uncoupling process, Energy Fuels 26(5) (2012) 3069-3081. [22] L. Zhang, K.Z. Li, Z.H. Gu, X. Zhu, Y.G. Wei, L. Li, M.S. Tian, H. Wang, Iron-rich copper ore as a promising oxygen carrier for chemical looping combustion of methane, J. Taiwan Inst. Chem. Eng. 101(2019) 204-213. [23] Y.H. Bai, P. Lv, F. Li, X.D. Song, W.G. Su, G.S. Yu, Investigation into Ca/Na compounds catalyzed coal pyrolysis and char gasification with steam, Energy Convers. Manag. 184(2019) 172-179. [24] X. Wang, T.T. Xu, X.Y. Jin, Z.Q. Hu, S.M. Liu, B. Xiao, Z.H. Chen, M. Hu, CuO supported on olivine as an oxygen carrier in chemical looping processes with pine sawdust used as fuel, Chem. Eng. J. 330(2017) 480-490. [25] J. Marinkovic, H. Thunman, P. Knutsson, M. Seemann, Characteristics of olivine as a bed material in an indirect biomass gasifier, Chem. Eng. J. 279(2015) 555-566. [26] C. Kuang, S.Z. Wang, M. Luo, J.J. Cai, J. Zhao, Investigation of CuO-based oxygen carriers modified by three different ores in chemical looping combustion with solid fuels, Renew. Energy 154(2020) 937-948. [27] E.M. Eyring, G. Konya, J.S. Lighty, A.H. Sahir, A.F. Sarofim, K. Whitty, Chemical looping with copper oxide as carrier and coal as fuel, Oil Gas Sci. Technol. 66(2) (2011) 209-221. [28] C.K. Clayton, K.J. Whitty, Measurement and modeling of decomposition kinetics for copper oxide-based chemical looping with oxygen uncoupling, Appl. Energy 116(2014) 416-423. [29] A.K. Dubey, A. Samanta, P. Sarkar, R. Dey, V.K. Saxena, Performance and kinetic evaluation of synthesized CuO/SBA-15 oxygen carrier for chemical looping with oxygen uncoupling, Energy Technol. 7(10) (2019) 1900407. [30] K. Wang, Q.B. Yu, Q. Qin, Reduction kinetics of Cu-based oxygen carriers for chemical looping air separation, Energy Fuels 27(9) (2013) 5466-5474. [31] L. Guo, H.B. Zhao, K. Wang, D.F. Mei, Z.J. Ma, C.G. Zheng, Reduction kinetics analysis of Sol-gel-derived CuO/CuAl2O4 oxygen carrier for chemical looping with oxygen uncoupling, J. Therm. Anal. Calorim. 123(1) (2016) 745-756. [32] I. Adánez-Rubio, P. Gayán, A. Abad, F. García-Labiano, L.F. de Diego, J. Adánez, Kinetic analysis of a Cu-based oxygen carrier:Relevance of temperature and oxygen partial pressure on reduction and oxidation reactions rates in chemical looping with oxygen uncoupling (CLOU), Chem. Eng. J. 256(2014) 69-84. [33] D.F. Mei, H.B. Zhao, Z.J. Ma, W.J. Yang, Y.F. Fang, C.G. Zheng, Oxygen release kinetics and mechanism study on Cu-, Co-, Mn-based oxygen carrier, J. Fuel Chem. Technol. 41(2) (2013) 235-242. [34] W.T. Hu, F. Donat, S.A. Scott, J.S. Dennis, Kinetics of oxygen uncoupling of a copper based oxygen carrier, Appl. Energy 161(2016) 92-100. [35] A.H. Sahir, H.Y. Sohn, H. Leion, J.S. Lighty, Rate analysis of chemical-looping with oxygen uncoupling (CLOU) for solid fuels, Energy Fuels 26(7) (2012) 4395-4404. [36] M. Arjmand, M. Keller, H. Leion, T. Mattisson, A. Lyngfelt, Oxygen release and oxidation rates of MgAl2O4-supported CuO oxygen carrier for chemicallooping combustion with oxygen uncoupling (CLOU), Energy Fuels 26(11) (2012) 6528-6539. [37] S.B. Peterson, G. Konya, C.K. Clayton, R.J. Lewis, B.R. Wilde, E.M. Eyring, K.J. Whitty, Characteristics and CLOU performance of a novel SiO2-supported oxygen carrier prepared from CuO and β-SiC, Energy Fuels 27(10) (2013) 6040-6047. [38] S.Z. Wang, M. Luo, G.X. Wang, L.F. Wang, M. Lv, Analysis of reactivity of a CuObased oxygen carrier for chemical looping combustion of coal, Energy Fuels 26(6) (2012) 3275-3283. [39] J.J. Cai, S.Z. Wang, M. Luo, D.H. Xu, CO2 capture performance of Portland cement-based carbide slag and the enhancement of its CO2 capture capacity, Chem. Eng. Technol. 41(8) (2018) 1577-1586. [40] J.J. Cai, S.Z. Wang, Z.Z. Xiao, A study on the CO2 capture and attrition performance of construction and demolition waste, Fuel 222(2018) 232-242. [41] X. Tian, H.B. Zhao, K. Wang, J.C. Ma, C.G. Zheng, Performance of cement decorated copper ore as oxygen carrier in chemical-looping with oxygen uncoupling, Int. J. Greenh. Gas Control. 41(2015) 210-218. [42] J.D. Hancock, J.H. Sharp, Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3, J. Am. Ceram. Soc. 55(2) (1972) 74-77. [43] M. Luo, S.Z. Wang, L.F. Wang, M. Lv, Reduction kinetics of iron-based oxygen carriers using methane for chemical-looping combustion, J. Power Sources 270(2014) 434-440. [44] Y.L. Zhang, H.B. Zhao, L. Guo, C.G. Zheng, Decomposition mechanisms of Cubased oxygen carriers for chemical looping with oxygen uncoupling based on density functional theory calculations, Combust. Flame 162(4) (2015) 1265-1274. [45] Z.R. Zhang, T.J. Pinnavaia, Mesostructured c-Al2O3with a lathlike framework morphology, J. Am. Chem. Soc. 124(41) (2002) 12294-12301. [46] S.Y. Chen, A. Soomro, R. Yu, J. Hu, Z. Sun, W.G. Xiang, Integration of chemical looping combustion and supercritical CO2 cycle for combined heat and power generation with CO2 capture, Energy Convers. Manag. 167(2018) 113-124. [47] L.Y. Chen, J.H. Bao, L. Kong, M. Combs, H.S. Nikolic, Z. Fan, K.L. Liu, Activation of ilmenite as an oxygen carrier for solid-fueled chemical looping combustion, Appl. Energy 197(2017) 40-51. [48] H. Song, K. Shah, E. Doroodchi, B. Moghtaderi, Development of a Cu-Mg-based oxygen carrier with SiO2 as a support for chemical looping air separation, Energy Fuels 28(1) (2014) 163-172. |