[1] J. Reedijk, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier Waltham, MA, [2] Y.X. Zuo, T.M. Guo, Extension of the Patel-Teja equation of state to the prediction of the solubility of natural gas in formation water, Chem. Eng. Sci. 46 (12) (1991) 3251-3258 [3] P. Debye, E. Huckel, Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen, Physikalische Zeitschrift 24 (1923) 185-206 [4] A.H. Harvey, J.M. Prausnitz, Thermodynamics of high-pressure aqueous systems containing gases and salts, AlChE J. 35 (4) (1989) 635-644 [5] L. Blum, Mean spherical model for asymmetric electrolytes: I. Method of solution, Mol. Phys. 30 (5) (1975) 1529-1535 [6] M. Born, Volumen und hydratationswärme der ionen, Zeitschrift für Physik 1 (1) (1920) 45-48 [7] K. Aasberg-Petersen, E. Stenby, A. Fredenslund, Prediction of high-pressure gas solubilities in aqueous mixtures of electrolytes, Ind. Eng. Chem. Res. 30 (9) (1991) 2180-2185 [8] I. Søreide, C.H. Whitson, Peng-Robinson predictions for hydrocarbons, CO2, N2, and H2S with pure water and NaCl brine, Fluid Phase Equilib. 77 (1992) 217-240 [9] J.M. Schreckenberg, S. Dufal, A.J. Haslam, C.S. Adjiman, G. Jackson, A. Galindo, Modelling of the thermodynamic and solvation properties of electrolyte solutions with the statistical associating fluid theory for potentials of variable range, Mol. Phys. 112 (17) (2014) 2339-2364 [10] R. Sun, J. Dubessy, Prediction of vapor-liquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part II: Application to H2O-NaCl and CO2-H2O-NaCl System, Geochim. Cosmochim. Acta 88 (2012) 130-145 [11] S.P. Tan, Y. Yao, M. Piri, Modeling the solubility of SO2+ CO2 mixtures in brine at elevated pressures and temperatures, Ind. Eng. Chem. Res. 52 (31) (2013) 10864-10872 [12] J. Rozmus, J.C. de Hemptinne, A. Galindo, S. Dufal, P. Mougin, Modeling of strong electrolytes with ePPC-SAFT up to high temperatures, Ind. Eng. Chem. Res. 52 (29) (2013) 9979-9994 [13] G.M. Kontogeorgis, E.C. Voutsas, I.V. Yakoumis, D.P. Tassios, An equation of state for associating fluids, Ind. Eng. Chem. Res. 35 (11) (1996) 4310-4318 [14] H. Haghighi, A. Chapoy, B. Tohidi, Methane and water phase equilibria in the presence of single and mixed electrolyte solutions using the cubic-plus-association equation of state, Oil Gas Sci. Technol.-Revue de l'IFP 64 (2) (2009) 141-154 [15] B. Maribo-Mogensen, K. Thomsen, G.M. Kontogeorgis, An electrolyte CPA equation of state for mixed solvent electrolytes, AlChE J. 61 (9) (2015) 2933-2950 [16] X. Courtial, N. Ferrando, J.C. de Hemptinne, P. Mougin, Electrolyte CPA equation of state for very high temperature and pressure reservoir and basin applications, Geochim. Cosmochim. Acta 142 (2014) 1-14 [17] M. Valiskó, D. Boda, Unraveling the behavior of the individual ionic activity coefficients on the basis of the balance of ion-ion and ion-water interactions, J. Phys. Chem. B 119 (4) (2015) 1546-1557 [18] I.Y. Shilov, A.K. Lyashchenko, The role of concentration dependent static permittivity of electrolyte solutions in the Debye-Hückel theory, J. Phys. Chem. B 119 (31) (2015) 10087-10095 [19] M. Valiskó, D. Boda, Activity coefficients of individual ions in LaCl3 from the II+ IW theory, Mol. Phys. 15 (9-12) (2017) 1245-1252 [20] L. Sun, X. Liang, N. von Solms, G.M. Kontogeorgis, Analysis of some electrolyte models including their ability to predict the activity coefficients of individual ions, Ind. Eng. Chem. Res. 59 (25) (2020) 11790-11809 [21] G.M. Kontogeorgis, G.K. Folas, Thermodynamic models for industrial applications: From classical and advanced mixing rules to association theories, John Wiley & Sons, New Jersey 15 (2009) 461-523 [22] L. Blum, Mean spherical model for asymmetric electrolytes: I. Method of solution, Mol. Phys. 30 (5) (1975) 1529-1535 [23] A.H. Harvey, T.W. Copeman, J.M. Prausnitz, Explicit approximations to the mean spherical approximation for electrolyte systems with unequal ion sizes, J. Phys. Chem. 92 (1988) 6432-6436 [24] K. Thomsen, Data Bank for Electrolyte Solutions Denmark, Technical University of Denmark, Copenhagen (2016) [25] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A: Cryst. Phys., Diffract., Theor. General Crystallogr. 32 (5) (1976) 751-767 [26] W.M. Latimer, K.S. Pitzer, C.M. Slansky, The free energy of hydration of gaseous ions, and the absolute potential of the normal calomel electrode, J. Chem. Phys. 7 (2) (1939) 108-111 [27] I. Tsivintzelis, G.M. Kontogeorgis, M.L. Michelsen, E.H. Stenby, Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: Binary mixtures with CO2, Fluid Phase Equilib. 306 (1) (2011) 38-56 [28] L. Sun, G.M. Kontogeorgis, N. von Solms, X. Liang, Modeling of gas solubility using the electrolyte cubic plus association equation of state, Ind. Eng. Chem. Res. 58 (37) (2019) 17555-17567 [29] L. Sun, X. Liang, N. von Solms, G.M. Kontogeorgis, Thermodynamic modeling of gas solubility in aqueous solutions of quaternary ammonium salts with the e-CPA equation of state, Fluid Phase Equilib. 507 (2020) 112423 [30] G. Wilczek-Vera, E. Rodil, J.H. Vera, Towards accurate values of individual ion activities: additional data for NaCl, NaBr and KCl, and new data for NH4Cl, Fluid Phase Equilib. 241 (1) (2006) 59-69 [31] E.C.W. Clarke, D.N. Glew, Evaluation of the thermodynamic functions for aqueous sodium chloride from equilibrium and calorimetric measurements below 154 C, J. Phys. Chem. Ref. Data 14 (2) (1985) 489-610 [32] D.R. Lide, CRC Handbook of Chemistry and Physics USA, CRC Press, Boca Raton. (2004) [33] B.M. Fabuss, A. Korosi, A.K.M.S. Hug, Densities of binary and ternary aqueous solutions of NaCl, Na2SO4 and MgSO4 of sea waters, and sea water concentrates, J. Chem. Eng. Data 11 (3) (1966) 325-331 [34] Z. Duan, R. Sun, An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar, Chem. Geol. 193 (3-4) (2003) 257-271 [35] W. Yan, S. Huang, E.H. Stenby, Measurement and modeling of CO2 solubility in NaCl brine and CO2-saturated NaCl brine density, Int. J. Greenhouse Gas Control 5 (6) (2011) 1460-1477 [36] Z. Duan, N. Møller, J. Greenberg, J.H. Weare, The prediction of methane solubility in natural waters to high ionic strength from 0 to 250 C and from 0 to 1600 bar, Geochim. Cosmochim. Acta 56 (4) (1992) 1451-1460 [37] D. Koschel, J.Y. Coxam, L. Rodier, V. Majer, Enthalpy and solubility data of CO2 in water and NaCl (aq) at conditions of interest for geological sequestration, Fluid Phase Equilib. 247 (1-2) (2006) 107-120 [38] R.K. Stoessell, P.A. Byrne, Salting-out of methane in single-salt solutions at 25 C and below 800 psia, Geochim. Cosmochim. Acta 46 (8) (1982) 1327-1332 [39] T.D. O'Sullivan, N.O. Smith, Solubility and partial molar volume of nitrogen and methane in water and in aqueous sodium chloride from 50 to 125. deg. and 100 to 600 atm, J. Phys. Chem. 74 (7) (1970) 1460-1466 [40] A. Eucken, G. Hertzberg, Aussalzeffekt und Ionenhydratation, Zeitschrift Für Physikalische Chemie 195 (1) (1950) 1-23 [41] G. Geffcken, Beiträge zur kenntnis der löslichkeitsbeeinflussung, Zeitschrift für Physikalische Chemie 49 (1) (1904) 257-302 [42] P.M. Armenante, H.T. Karlsson, Salting-out parameters for organic acids, J. Chem. Eng. Data, Switzerland 27 (1982) 155-156 [43] R. Battino, P.G. Seybold, The O2/N2 ratio gas solubility mystery, J. Chem. Eng. Data 56 (12) (2011) 5036-5044 [44] I.V. Pobelov, Chemistry, molecular sciences and chemical engineering: thermodynamics of ionic processes in solutions, Elsevier, Amsterdam, 2013 (2019) 299-315 [45] M.H. Abraham, J. Andonian-Haftvan, G.S. Whiting, A. Leo, R.S. Taft, Taft, Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapours in water at 298 K, and a new method for its determination, J. Chem. Soc., Perkin Trans. 2 (8) (1994) 1777-1791 [46] L. Turi, J.J. Dannenberg, Dannenberg, Molecular orbital studies of C-H???O hydrogen-bonded complexes, J. Phys. Chem. 97 (30) (1993) 7899-7909 [47] J. Setschenow, Über die konstitution der salzlösungen auf grund ihres verhaltens zu kohlensäure, Zeitschrift Für Physikalische Chemie 4 (1) (1889) 117-125 [48] A.E. Markham, K.A. Kobe, The solubility of carbon dioxide and nitrous oxide in aqueous salt solutions, J. Am. Chem. Soc. 63 (2) (1941) 449-454 [49] T. Yano, T. Suetaka, T. Umehara, A. Horiuchi, Solubilities of methane, ethylene, and propane in aqueous electrolyte solutions, Kagaku Kogaku 38 (1974) 320-323 |