[1] L.S. Wang, L.X. Tao, M.S. Xie, G.F. Xu, J.S. Huang, Y.D. Xu, Dehydrogenation and aromatization of methane under non-oxidizing conditions, Catal. Lett. 21 (1-2) (1993) 35-41 [2] J.H. Lunsford, Catalytic conversion of methane to more useful chemicals and fuels: A challenge for the 21st century, Catal. Today 63 (2-4) (2000) 165-174 [3] S.T. Liu, L.S. Wang, R. Ohnishi, M. Ichikawa, Bifunctional catalysis of Mo/HZSM-5 in the dehydroaromatization of methane to benzene and naphthalene XAFS/TG/DTA/MASS/FTIR characterization and supporting effects, J. Catal. 181 (2) (1999) 175-188 [4] V.T.T. Ha, L.V. Tiep, P. Meriaudeau, C. Naccache, Aromatization of methane over zeolite supported molybdenum: Active sites and reaction mechanism, J. Mol. Catal. A: Chem. 181 (1-2) (2002) 283-290 [5] K.S. Wong, J.W. Thybaut, E. Tangstad, M.W. Stöcker, G.B. Marin, Methane aromatisation based upon elementary steps: Kinetic and catalyst descriptors, Microporous Mesoporous Mater. 164 (2012) 302-312 [6] S.T. Liu, Q. Dong, R. Ohnishi, M. Ichikawa, Remarkable non-oxidative conversion of methane to naphthalene and benzene on Co and Fe modified Mo/HZSM-5 catalysts, Chem. Commun. 15 (1997) 1455-1456 [7] C.L. Zhang, S. Li, Y. Yuan, W.X. Zhang, T.H. Wu, L.W. Lin, Aromatization of methane in the absence of oxygen over Mo-based catalysts supported on different types of zeolites, Catal. Lett. 56 (4) (1998) 207-213 [8] S.T. Qi, B.L. Yang, Methane aromatization using Mo-based catalysts prepared by microwave heating, Catal. Today 98 (4) (2004) 639-645 [9] A. Malinowski, R. Ohnishi, M. Ichikawa, CVD synthesis in static mode of Mo/H-ZSM5 catalyst for the methane dehydroaromatization reaction to benzene, Catal. Lett. 96 (3-4) (2004) 141-146 [10] K. Honda, X. Chen, Z.G. Zhang, Preparation of highly active binder-added MoO3/HZSM-5 catalyst for the non-oxidative dehydroaromatization of methane, Appl. Catal. A: Gen. 351 (1) (2008) 122-130 [11] J.H. Lunsford, E.M. Cordi, P. Qiu, M.P. Rosynek, in: Steady-State production of olefins and aromatics in high yields from methane using an integrated recycle reaction system. Natural Gas Conversion V, Elsevier, Amsterdam, 1998, pp. 227–234. [12] K. Honda, T. Yoshida, Z.G. Zhang, Methane dehydroaromatization over Mo/HZSM-5 in periodic CH4-H2 switching operation mode, Catal. Commun. 4 (1) (2003) 21-26 [13] B. Cook, D. Mousko, W. Hoelderich, R. Zennaro, Conversion of methane to aromatics over Mo2C/ZSM-5 catalyst in different reactor types, Appl. Catal. A: Gen. 365 (1) (2009) 34-41 [14] Z.G. Zhang, Y.B. Xu, Y. Song, H.T. Ma, Y. Yamamoto, NGU: Development of a two-bed circulating fluidized bed reactor system for nonoxidative aromatization of methane over Mo/HZSM-5 catalyst, Environ. Prog. Sustainable Energy 35 (2) (2016) 325-333 [15] O. Rival, B.P.A. Grandjean, C. Guy, A. Sayari, F. Larachi, Oxygen-free methane aromatization in a catalytic membrane reactor, Ind. Eng. Chem. Res. 40 (10) (2001) 2212-2219 [16] M.C. Iliuta, B.P.A. Grandjean, F. Larachi, Methane nonoxidative aromatization over Ru-Mo/HZSM-5 at temperatures up to 973 K in a palladium-silver/stainless steel membrane reactor, Ind. Eng. Chem. Res. 42 (2) (2003) 323-330 [17] M.P. Gimeno, J. Soler, J. Herguido, M. Menéndez, Counteracting catalyst deactivation in methane aromatization with a two zone fluidized bed reactor, Ind. Eng. Chem. Res. 49 (3) (2010) 996-1000 [18] Z.G. Zhang, Process, reactor and catalyst design: Towards application of direct conversion of methane to aromatics under nonoxidative conditions, Carbon Resour. Convers. 2 (3) (2019) 157-174 [19] R. Boerefijn, N.J. Gudde, M. Ghadiri, A review of attrition of fluid cracking catalyst particles, Adv. Powder Technol. 11 (2) (2000) 145-174 [20] J. Reppenhagen, J. Werther, Catalyst attrition in cyclones, Powder Technol. 113 (1-2) (2000) 55-69 [21] F.H. Wu, W. Dongfang, Attrition resistances and mechanisms of three types of FCC catalysts, Powder Technol. 305 (2017) 289-296 [22] J.M. Whitcombe, I.E. Agranovski, R.D. Braddock, Attrition due to mixing of hot and cold FCC catalyst particles, Powder Technol. 137 (3) (2003) 120-130 [23] J.G. Hao, Y.F. Zhao, M. Ye, Z.M. Liu, Attrition of methanol to olefins catalyst with high-velocity air jets at elevated temperature, Adv. Powder Technol. 26 (3) (2015) 734-741 [24] F. Solymosi, A. Szöke, J. Cserényi, Conversion of methane to benzene over Mo2C and Mo2C/ZSM-5 catalysts, Catal. Lett. 39 (3-4) (1996) 157-161 [25] D.J. Wang, J.H. Lunsford, M.P. Rosynek, Characterization of a Mo/ZSM-5 catalyst for the conversion of methane to benzene, J. Catal. 169 (1) (1997) 347-358 [26] I. Vollmer, B. van der Linden, S. Ould-Chikh, A. Aguilar-Tapia, I. Yarulina, E. Abou-Hamad, Y.G. Sneider, A.I. Olivos Suarez, J.L. Hazemann, F. Kapteijn, J. Gascon, On the dynamic nature of Mo sites for methane dehydroaromatization, Chem. Sci. 9 (21) (2018) 4801-4807 [27] H. Jiang, L.S. Wang, W. Cui, Y.D. Xu, Study on the induction period of methane aromatization over Mo/HZSM-5: Partial reduction of Mo species and formation of carbonaceous deposit, Catal. Lett. 57 (3) (1999) 95-102 [28] D. Ma, Y.Y. Shu, M.J. Cheng, Y. de Xu, X.H. Bao, On the induction period of methane aromatization over Mo-based catalysts, J. Catal. 194 (1) (2000) 105-114 [29] L. Men, L. Zhang, Y. Xie, Z. Liu, J. Bai, G. Sha, J. Xie, A new phenomenon in the induction period of the methane dehydroaromatization reaction, Chem. Commun. (Camb) 18 (2001) 1750-1751 [30] H.M. Liu, T. Li, B.L. Tian, Y. de Xu, Study of the carbonaceous deposits formed on a Mo/HZSM-5 catalyst in methane dehydro-aromatization by using TG and temperature-programmed techniques, Appl. Catal. A: Gen. 213 (1) (2001) 103-112 [31] D. Ma, D.Z. Wang, L.L. Su, Y.Y. Shu, Y. de Xu, X.H. Bao, Carbonaceous deposition on Mo/HMCM-22 catalysts for methane aromatization: A TP technique investigation, J. Catal. 208 (2) (2002) 260-269 [32] Y.Y. Shu, H.T. Ma, R. Ohnishi, M. Ichikawa, Highly stable performance of catalytic methane dehydrocondensation towards benzene on Mo/HZSM-5 by a periodic switching treatment with H2 and CO2, Chem. Commun. 1 (2003) 86-87 [33] A.C.C. Rodrigues, J.L.F. Monteiro, The use of CH4/H2 cycles on dehydroaromatization of methane over MoMCM-22, Catal. Commun. 9 (6) (2008) 1060-1065 [34] H.M. Liu, L.L. Su, H.X. Wang, W.J. Shen, X.H. Bao, Y. de Xu, The chemical nature of carbonaceous deposits and their role in methane dehydro-aromatization on Mo/MCM-22 catalysts, Appl. Catal. A: Gen. 236 (1-2) (2002) 263-280 [35] J.H. Choi, Y.S. Moon, C.K. Yi, S.D. Kim, Attrition of zinc-titanate sorbent in a bubbling fluidized bed, J. Taiwan Inst. Chem. Eng. 41 (6) (2010) 656-660 [36] G. Xiao, J.R. Grace, C.J. Lim, Attrition characteristics and mechanisms for limestone particles in an air-jet apparatus, Powder Technol. 207 (1-3) (2011) 183-191 [37] W. Dongfang, Z.D. Gu, Y.D. Li, Attrition of catalyst particles in a laboratory-scale fluidized-bed reactor, Chem. Eng. Sci. 135 (2015) 431-440 [38] W. Dongfang, F.H. Wu, Z.D. Gu, Catalyst attrition in an ASTM fluidized bed, Catal. Today 264 (2016) 70-74 [39] S. Kukade, P. Kumar, P.V.C. Rao, N.V. Choudary, Comparative study of attrition measurements of commercial FCC catalysts by ASTM fluidized bed and jet cup test methods, Powder Technol. 301 (2016) 472-477 [40] T.J. Jones, J.K. Russell, C.J. Lim, N. Ellis, J.R. Grace, Pumice attrition in an air-jet, Powder Technol. 308 (2017) 298-305 [41] R. Cocco, Y. Arrington, R. Hays, J. Findlay, S.B.R. Karri, T.M. Knowlton, Jet cup attrition testing, Powder Technol. 200 (3) (2010) 224-233 [42] M. Rydén, P. Moldenhauer, S. Lindqvist, T. Mattisson, A. Lyngfelt, Measuring attrition resistance of oxygen carrier particles for chemical looping combustion with a customized jet cup, Powder Technol. 256 (2014) 75-86 [43] W. Xu, D.S. DeCroix, X. Sun, Mechanistic based DEM simulation of particle attrition in a jet cup, Powder Technol. 253 (2014) 385-392 [44] B. Amblard, S. Bertholin, C. Bobin, T. Gauthier, Development of an attrition evaluation method using a Jet Cup rig, Powder Technol. 274 (2015) 455-465 [45] S.M. Tasirin, D. Geldart, Experimental investigation on fluidized bed jet grinding, Powder Technol. 105 (1-3) (1999) 337-341 [46] A. Thon, J. Werther, Attrition resistance of a VPO catalyst, Appl. Catal. A: Gen. 376 (1-2) (2010) 56-65 [47] C. Debras, Y.J. Liu, N. van Garderen, B. Minisini, T. Graule, F.J. Clemens, Development of granular materials for fluidized bed process: Measuring attrition resistance with a horizontal ball milling device and its mathematical description, Powder Technol. 288 (2016) 157-163 [48] A. Afshar Ebrahimi, S. Foroutan Ghazvini, Experimental attrition study of FCC catalysts through 2D/3D contour plots and response surface models, Powder Technol. 336 (2018) 80-84 [49] S. Tamjid, S.H. Hashemabadi, M. Shirvani, Prediction of catalyst attrition in a regeneration cyclone, Filtr. Sep. 47 (5) (2010) 29-33 [50] J.G. Hao, Y.F. Zhao, M. Ye, Z.M. Liu, Attrition of methanol to olefins catalyst in jet cup, Powder Technol. 316 (2017) 79-86 [51] F. Li, C. Briens, F. Berruti, J. McMillan, Particle attrition with supersonic nozzles in a fluidized bed at high temperature, Powder Technol. 228 (2012) 385-394 [52] H.L. Zhang, J. Degrève, J. Baeyens, S.Y. Wu, Powder attrition in gas fluidized beds, Powder Technol. 287 (2016) 1-11 [53] A. Cabello, P. Gayán, F. García-Labiano, L.F. de Diego, A. Abad, J. Adánez, On the attrition evaluation of oxygen carriers in Chemical Looping Combustion, Fuel Process. Technol. 148 (2016) 188-197 [54] S. Vasireddy, A. Campos, E. Miamee, A. Adeyiga, R. Armstrong, J.D. Allison, J.J. Spivey, Study of attrition of Fe-based catalyst supported over spent FCC catalysts and their Fischer-Tropsch activity in a fixed bed reactor, Appl. Catal. A: Gen. 372 (2) (2010) 184-190 [55] P. Yan, Z.G. Zhang, D.P. Li, X. Cheng, X.Z. Zhang, F. Yang, C.F. Huang, X.X. Ma, Development of a CH4 dehydroaromatization-catalyst regeneration fluidized bed system, Chin. J. Chem. Eng. 26 (9) (2018) 1928-1936 [56] Y.B. Xu, J. de Wang, Y. Suzuki, Z.G. Zhang, Effect of transition metal additives on the catalytic stability of Mo/HZSM-5 in the methane dehydroaromatization under periodic CH4-H2 switch operation at 1073 K, Appl. Catal. A: Gen. 409-410 (2011) 181-193 |