[1] F.M. Chen, X. Liu, Advancing biomaterials of human origin for tissue engineering, Prog. Polym. Sci. 53 (2016) 86-168 [2] A. Vishwakarma, N.S. Bhise, M.B. Evangelista, J. Rouwkema, M.R. Dokmeci, A.M. Ghaemmaghami, N.E. Vrana, A. Khademhosseini, Engineering immunomodulatory biomaterials to tune the inflammatory response, Trends Biotechnol. 34 (2016) 470-482 [3] S. Ullm, A. Kruger, C. Tondera, T.P. Gebauer, A.T. Neffe, A. Lendlein, F. Jung, J. Pietzsch, Biocompatibility and inflammatory response in vitro and in vivo to gelatin-based biomaterials with tailorable elastic properties, Biomaterials 35 (2014) 9755-9766 [4] J.M. Anderson, A.K. McNally, Biocompatibility of implants: lymphocyte/macrophage interactions, Semin. Immunopathol. 33 (2011) 221-233 [5] K. Hamidzadeh, S.M. Christensen, E. Dalby, P. Chandrasekaran, D.M. Mosser, Macrophages and the recovery from acute and chronic inflammation, Annu. Rev. Physiol. 79 (2017) 567-592 [6] T. Lawrence, D.W. Gilroy, P.R. Colville-Nash, D.A. Willoughby, Possible new role for NF-kappaB in the resolution of inflammation, Nat. Med. 7 (2001) 1291-1297 [7] T.H. Lin, Y. Tamaki, J. Pajarinen, H.A. Waters, D.K. Woo, Z. Yao, S.B. Goodman, Chronic inflammation in biomaterial-induced periprosthetic osteolysis: NF-kappaB as a therapeutic target, Acta Biomater. 10 (2014) 1-10 [8] P.L. Kang, Y.H. Lin, K. Settu, C.S. Yen, C.Y. Yeh, J.T. Liu, C.J. Chen, S.J. Chang, A facile fabrication of biodegradable and biocompatible cross-linked gelatin as screen printing substrates, Polymers 12 (5) (2020) 1186 [9] E. Kenawy, A.M. Omer, T.M. Tamer, M.A. Elmeligy, M.S.M. Eldin, Fabrication of biodegradable gelatin/chitosan/cinnamaldehyde crosslinked membranes for antibacterial wound dressing applications, Int. J. Biol. Macromol. 139 (2019) 440-448 [10] Z. Luo, W. Sun, J. Fang, K. Lee, S. Li, Z. Gu, M.R. Dokmeci, A. Khademhosseini, Biodegradable gelatin methacryloyl microneedles for transdermal drug delivery, Adv. Healthc. Mater. 8 (2019) e1801054 [11] K.X. Nie, S.S. Han, J.M. Yang, Q.Q. Sun, X.F. Wang, X.M. Li, Q. Li, Enzyme-crosslinked electrospun fibrous gelatin hydrogel for potential soft tissue engineering, Polymers 12 (9) (2020) 1977 [12] F. Bode, M.A. da Silva, A.F. Drake, S.B. Ross-Murphy, C.A. Dreiss, Enzymatically cross-linked tilapia gelatin hydrogels: physical, chemical, and hybrid networks, Biomacromolecules 12 (2011) 3741-3752 [13] C. Pena, K. de la Caba, A. Eceiza, R. Ruseckaite, I. Mondragon, Enhancing water repellence and mechanical properties of gelatin films by tannin addition, Bioresour. Technol. 101 (2010) 6836-6842 [14] R. Dash, M. Foston, A.J. Ragauskas, Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers, Carbohydr. Polym. 91 (2013) 638-645 [15] M. Hajiabbas, I. Alemzadeh, M. Vossoughi, A porous hydrogel-electrospun composite scaffold made of oxidized alginate/gelatin/silk fibroin for tissue engineering application, Carbohydr. Polym. 245 (2020) 116465 [16] Y. Zhu, D. Zhang, S. He, Z. Huang, Z. Zhang, J. Zhu, Y. Cao, Controlled release of methylene blue from glutaraldehyde-modified gelatin, J. Food Biochem. 43 (2019) e12977 [17] J.E. Gough, C.A. Scotchford, S. Downes, Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis, J. Biomed. Mater. Res. 61 (2002) 121-130 [18] A.K. Lynn, I.V. Yannas, W. Bonfield, Antigenicity and immunogenicity of collagen, J. Biomed. Mater. Res. B Appl. Biomater. 71 (2004) 343-354 [19] M. Nair, R.K. Johal, S.W. Hamaia, S.M. Best, R.E. Cameron, Tunable bioactivity and mechanics of collagen-based tissue engineering constructs: A comparison of EDC-NHS, genipin and TG2 crosslinkers, Biomaterials 254 (2020) 120109 [20] Q.S. Wang, Y. Xiang, Y.L. Cui, K.M. Lin, X.F. Zhang, Dietary blue pigments derived from genipin, attenuate inflammation by inhibiting LPS-induced iNOS and COX-2 expression via the NF-kappaB inactivation, PLoS ONE 7 (2012) e34122 [21] K.D. Li, K. Yan, Q.S. Wang, J.S. Tian, D. Xu, W.Y. Zhang, Y.L. Cui, Antidepressant-like effects of dietary gardenia blue pigment derived from genipin and tyrosine, Food Funct. 10 (2019) 4533-4545 [22] Y. Zhang, Q.S. Wang, K. Yan, Y. Qi, G.F. Wang, Y.L. Cui, Preparation, characterization, and evaluation of genipin crosslinked chitosan/gelatin three-dimensional scaffolds for liver tissue engineering applications, J. Biomed. Mater. Res. A 104 (2016) 1863-1870 [23] A.O. Elzoghby, W.M. Samy, N.A. Elgindy, Protein-based nanocarriers as promising drug and gene delivery systems, J. Control. Release 161 (2012) 38-49 [24] J. Ruiz, A. Mantecón, V. Cádiz, Synthesis and properties of hydrogels from poly (vinyl alcohol) and ethylenediaminetetraacetic dianhydride, Polymer 42 (2001) 6347-6354 [25] M. Rahmati, E.A. Silva, J.E. Reseland, A.H. C, H.J. Haugen, Biological responses to physicochemical properties of biomaterial surface, Chem. Soc. Rev. 49 (2020) 5178-5224. [26] J.M. Anderson, A. Rodriguez, D.T. Chang, Foreign body reaction to biomaterials, Semin. Immunol. 20 (2008) 86-100 [27] M.G. Netea, F. Balkwill, M. Chonchol, F. Cominelli, M.Y. Donath, E.J. Giamarellos-Bourboulis, D. Golenbock, M.S. Gresnigt, M.T. Heneka, H.M. Hoffman, R. Hotchkiss, L.A.B. Joosten, D.L. Kastner, M. Korte, E. Latz, P. Libby, T. Mandrup-Poulsen, A. Mantovani, K.H.G. Mills, K.L. Nowak, L.A. O'Neill, P. Pickkers, T. van der Poll, P.M. Ridker, J. Schalkwijk, D.A. Schwartz, B. Siegmund, C.J. Steer, H. Tilg, J.W.M. van der Meer, F.L. van de Veerdonk, C.A. Dinarello, A guiding map for inflammation, Nat. Immunol. 18 (2017) 826-831 [28] N. Fujiwara, K. Kobayashi, Macrophages in inflammation, Curr. Drug Targets Inflamm. Allergy 4 (2005) 281-286 [29] L. Wilkinson, M. Friendly, The history of the cluster heat map, Am. Stat. 63 (2009) 179-184 [30] H. Kang, S.H.D. Wong, Q. Pan, G. Li, L. Bian, Anisotropic ligand nanogeometry modulates the adhesion and polarization state of macrophages, Nano Lett. 19 (2019) 1963-1975 [31] L. Ji, T. Wang, L. Tian, H. Song, M. Gao, Roxatidine inhibits fibrosis by inhibiting NFkappaB and MAPK signaling in macrophages sensing breast implant surface materials, Mol. Med. Rep. 21 (2020) 161-172 [32] M. Barbeck, P. Booms, R. Unger, V. Hoffmann, R. Sader, C.J. Kirkpatrick, S. Ghanaati, Multinucleated giant cells in the implant bed of bone substitutes are foreign body giant cells-New insights into the material-mediated healing process, J. Biomed. Mater. Res. A 105 (2017) 1105-1111 |