[1] Recent Advances and Emerging Opportunities, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), 2014.[2] W.R. Clark, R.J. Hamburger,M.J. Lysaght, Effect ofmembrane composition and structure on solute removal and biocompatibility in hemodialysis, Kidney Int. 56 (6) (1999) 2005-2015.[3] U.S. Renal Data System, USRDS 2013 Annual Data Report: Atlas of Chronic Kidney Disease and End-stage Renal Disease in the United States, 2013.[4] S.K. Bowry, D.H. Krieter, Dialysismembranes today, Int. J. Artif. Organs 25 (5) (2002) 447-460.[5] M.K. Sinha,M.K. Purkait, Preparation and characterization of novel pegylated hydrophilic pH responsive polysulfone ultrafiltrationmembrane, J. Membr. Sci. 464 (2014) 20-32.[6] Udel® Polysulfone Catalog, Solvay Advanced Polymer Co. Ltd., Tokyo, Japan, 2002.[7] C. Zhao, X. Liu, M. Nomizu, N. Nishi, Blood compatible aspects of DNA-modified polysulfone membrane—protein adsorption and platelet adhesion, Biomaterials 24 (21) (2003) 3747-3755.[8] R.F. Boyd, A.L. Zydney, Analysis of protein fouling during ultrafiltration using a twolayer membrane model, Biotechnol. Bioeng. 59 (4) (1998) 451-460.[9] J. Wang, Y. Xu, L. Zhu, J. Li, B. Zhu, Amphiphilic ABA copolymers used for surface modification of polysulfone membranes, Part 1: molecular design, synthesis, and characterization, Polymer 49 (15) (2008) 3256-3264.[10] K. Krueger, C. Terne, C. Werner, U. Freudenberg, V. Jankowski,W. Zidek, et al., Characterization of polymer membranes by MALDI mass-spectrometric imaging techniques, Anal. Chem. 85 (10) (2013) 4998-5004.[11] Q. Shi, J.Q. Meng, R.S. Xu, X.L. Du, Y.F. Zhang, Synthesis of hydrophilic polysulfone membranes having antifouling and boron adsorption properties via blending with an amphiphilic graft glycopolymer, J. Membr. Sci. 444 (2013) 50-59.[12] F.Y. Mahlicli, S.A. Altinkaya, Surface modification of polysulfone based hemodialysis membranes with layer by layer self assembly of polyethyleneimine/alginateheparin: a simple polyelectrolyte blend approach for heparin immobilization, J. Mater. Sci. Mater. Med. 24 (2) (2013) 533-546.[13] W.W. Yue, H.J. Li, T. Xiang, H. Qin, S.D. Sun, C.S. Zhao, Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility, J. Membr. Sci. 446 (2013) 79-91.[14] H. Wang, L. Yang, X. Zhao, T. Yu, Q. Du, Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by blending sulfonated polyethersulfone, Chin. J. Chem. Eng. 17 (2) (2009) 324-329.[15] T. Hasegawa, Preparation and performance of protein-adsorption-resistant asymmetric porous membrane composed of polysulfone/phospholipid polymer blend, Biomaterials 22 (3) (2001) 243-251.[16] Y. Gao, G.P. Robertson, M.D. Guiver, X. Jian, S.D.Mikhailenko, K.Wang, S. Kaliaguine, Sulfonation of poly(phthalazinones) with fuming sulfuric acid mixtures for proton exchange membrane materials, J. Membr. Sci. 227 (1-2) (2003) 39-50.[17] S.W. Kuo, Hydrogen-bonding in polymer blends, J. Polym. Res. 15 (6) (2008) 459-486.[18] R. Guan, H. Zou, D. Lu, C. Gong, Y. Liu, Polyethersulfone sulfonated by chlorosulfonic acid and its membrane characteristics, Eur. Polym. J. 41 (7) (2005) 1554-1560.[19] S. Senthilkumar, S. Rajesh, A. Jayalakshmi, D. Mohan, Biocompatibility and separation performance of carboxylated poly (ether-imide) incorporated polyacrylonitrile membranes, Sep. Purif. Technol. 107 (2013) 297-309.[20] J. Huang, K. Zhang, K. Wang, Z. Xie, B. Ladewig, H. Wang, Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties, J. Membr. Sci. 423 (2012) 362-370.[21] G. Arthanareeswaran, P. Thanikaivelan, J.A. Raguime, M. Raajenthiren, D. Mohan, Metal ion separation and protein removal from aqueous solutions using modified cellulose acetate membranes: role of polymeric additives, Sep. Purif. Technol. 55 (1) (2007) 8-15.[22] J. Zeng, X. Sun, L. Zheng, Q. He, S. Li, Recovery of tungsten (VI) from aqueous solutions by complexation-ultrafiltration process with the help of polyquaternium, Chin. J. Chem. Eng. 20 (5) (2012) 831-836.[23] M. Meireles, A. Bessieres, I. Rogissart, P. Aimar, V. Sanchez, An appropriatemolecular size parameter for porous membranes calibration, J. Membr. Sci. 103 (1-2) (1995) 105-115.[24] M.E. Schrader, Young-Dupre revisited, Langmuir 11 (6) (1995) 3585-3589.[25] K. Ishihara, N.P. Ziats, B.P. Tierney, N. Nakabayashi, J.M. Anderson, Protein adsorption from human plasma is reduced on phospholipid polymers, J. Biomed. Mater. Res. 25 (11) (1991) 1397-1407.[26] Y. Tamada, E.A. Kulik, Y. Ikada, Simple method for platelet counting, Biomaterials 16 (3) (1995) 259-261.[27] W.C. Lin, T.Y. Liu, M.C. Yang, Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate, Biomaterials 25 (10) (2004) 1947-1957.[28] R.M. Hakim, Clinical implications of biocompatibility in blood purification membranes, Nephrol. Dial. Transplant. (Suppl. 2) (2000) 16-20.[29] C.M. Kee, A. Idris, Permeability performance of different molecular weight cellulose acetate hemodialysis membrane, Sep. Purif. Technol. 75 (2) (2010) 102-113.[30] I.C. Kim, J.G. Choi, T.M. Tak, Sulfonated polyethersulfone by heterogeneous method and its membrane performances, J. Appl. Polym. Sci. 74 (8) (1999) 2046-2055.[31] S. Rajesh, K.H. Shobana, S. Anitharaj, D.R. Mohan, Preparation, morphology, performance, and hydrophilicity studies of poly(amide-imide) incorporated cellulose acetate ultrafiltration membranes, Ind. Eng. Chem. Res. 50 (9) (2011) 5550-5564.[32] J. Barzin, B. Sadatnia, Correlation between macrovoid formation and the ternary phase diagram for polyethersulfone membranes prepared from two nearly similar solvents, J. Membr. Sci. 325 (1) (2008) 92-97.[33] M.M. Hossain,W. Gao, How is the surface treatments influence on the roughness of biocompatibility? Trends Biomater. Artif. Organs 22 (3) (2008) 144-157.[34] Zeman, Microfiltration and Ultrafiltration: Principles and Applications, CRC Press, 1996.[35] R.F. Brady, Comprehensive Desk Reference of Polymer Characterization and Analysis, Oxford University Press, 2003.[36] W. Norde, C.A. Haynes, Reversibility and the mechanism of protein adsorption, Proteins at Interfaces II, ACS Symposium Series, 1995.[37] J. Jin, W. Jiang, Q. Shi, J. Zhao, J. Yin, P. Stagnaro, Fabrication of PP-g-PEGMA-gheparin and its hemocompatibility: From protein adsorption to anticoagulant tendency, Appl. Surf. Sci. 258 (15) (2012) 5841-5849.[38] A. Sokolov, B.C. Hellerud, T.I. Tønnessen, E.A. Johannessen, T.E.Mollnes, Activation of coagulation and platelets by candidate membranes of implantable devices in a whole blood model without soluble anticoagulant, J. Biomed. Mater. Res. A 101 (2) (2013) 575-581.[39] A. Higuchi, K. Sugiyama, B.O. Yoon, M. Sakurai, M. Hara, M. Sumita, S. Sugawara, T. Shirai, Serum protein adsorption and platelet adhesion on pluronicTM-adsorbed polysulfone membranes, Biomaterials 24 (19) (2003) 3235-3245.[40] S.K. Law, R.P. Levine, Interaction between the third complement protein and cell surface macromolecules, Proc. Natl. Acad. Sci. U. S. A. 74 (7) (1977) 2701-2705.[41] K.E. Ryu, H. Rhim, C.W. Park, H.J. Chun, S.H. Hong, Y.C. Kim, Y.M. Lee, Anticomplement effects of anion-substituted poly(vinyl alcohol) membranes, Macromol. Res. 12 (1) (2004) 46-52.[42] J. Zhang, Z. Xu,W. Mai, C. Min, B. Zhou, M. Shan, Y. Li, C. Yang, Z.Wang, X. Qian, Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials, J. Mater. Chem. A 1 (9) (2013) 3101.[43] R.E. Kesting, Synthetic Polymeric, Membranes, McGraw-Hill, 1971.[44] S. McKelvey, W. Koros, Phase separation, vitrification, and the manifestation of macrovoids in polymeric asymmetric membranes, J. Membr. Sci. 112 (1996) 29-39.[45] Z. Yin, C. Cheng, H. Qin, C. Nie, C. He, C. Zhao, Hemocompatible polyethersulfone/polyurethane composite membrane for high-performance antifouling and antithrombotic dialyzer, J. Biomed. Mater. Res. B Appl. Biomater. 103B (2015) 97-105.[46] M. Hayama, K. Yamamoto, F. Kohori, K. Sakai, How polysulfone dialysis membranes containing polyvinylpyrrolidone achieve excellent biocompatibility? J. Membr. Sci. 234 (1-2) (2004) 41-49.[47] M. Fukuda, M. Miyazaki, T. Hiyoshi, M. Iwata, T. Hongou, Newly developed biocompatible membrane and effects of its smoother surface on antithrombogenicity, J. Appl. Polym. Sci. 72 (10) (1999) 1249-1256.[48] R.A. Latour, Biomaterials: protein-surface interactions, Encyclopedia of Biomaterials and Biomedical Engineering, Taylor & Francis, 2013.[49] R. Deppisch, M. Storr, R. Buck, H. Göhl, Blood material interactions at the surfaces of membranes in medical applications, Sep. Purif. Technol. 14 (1-3) (1998) 241-254.[50] M. Tanaka, T. Motomura, M. Kawada, T. Anzai, Y. Kasori, T. Shiroya, K. Shimura, M. Onishi, A. Mochizuki, Blood compatible aspects of poly(2-methoxyethylacrylate) (PMEA)-relationship between protein adsorption and platelet adhesion on PMEA surface, Biomaterials 21 (14) (2000) 1471-1481.[51] R. Tzoneva, M. Heuchel, T. Groth, G. Altankov, W. Albrecht, D. Paul, Fibrinogen adsorption and platelet interactions on polymer membranes, J. Biomater. Sci. Polym. Ed. 13 (9) (2002) 1033-1050.[52] J.H. Lee, G. Khang, J.W. Lee, H.B. Lee, Platelet adhesion onto chargeable functional group gradient surfaces, J. Biomed. Mater. Res. 40 (2) (1998) 180-186.[53] F.-C. Kung, M.-C. Yang, Effect of conjugated linoleic acid grafting on the hemocompatibility of polyacrylonitrile membrane, Polym. Adv. Technol. 17 (6) (2006) 419-425.[54] M. Toda, H. Iwata, Effects of hydrophobicity and electrostatic charge on complement activation by amino groups, Appl. Mater. Interfaces 2 (4) (2010) 1107-1113.[55] M. Tang, J. Xue, K. Yan, T. Xiang, S. Sun, C. Zhao, Heparin-like surface modification of polyethersulfone membrane and its biocompatibility, J. Colloid Interface Sci. 386 (1) (2012) 428-440.[56] T. Niwa, Uremic Toxins, John Wiley & Sons, 2012. |