中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (7): 1595-1607.DOI: 10.1016/j.cjche.2018.11.002
• Separation Science and Engineering • 上一篇 下一篇
Asmaa Selim1,2, Andras Jozsef Toth1, Daniel Fozer1, Eniko Haaz1, Nóra Valentínyi1, Tibor Nagy1, Orsolya Keri3, Lászlo Péter Bakos3, Imre Miklós Szilágyi3, Peter Mizsey1,4
收稿日期:
2018-07-12
出版日期:
2019-07-28
发布日期:
2019-10-14
通讯作者:
Daniel Fozer, Eniko Haaz, Tibor Nagy, Peter Mizsey
基金资助:
Asmaa Selim1,2, Andras Jozsef Toth1, Daniel Fozer1, Eniko Haaz1, Nóra Valentínyi1, Tibor Nagy1, Orsolya Keri3, Lászlo Péter Bakos3, Imre Miklós Szilágyi3, Peter Mizsey1,4
Received:
2018-07-12
Online:
2019-07-28
Published:
2019-10-14
Contact:
Daniel Fozer, Eniko Haaz, Tibor Nagy, Peter Mizsey
Supported by:
摘要: Pervaporation is an important membrane separation method of chemical engineering. In this work, silver-nanoparticles-poly (vinyl alcohol) nanocomposite membranes (AgNPs-PVA) are produced for the sake of improving its potentials for pervaporation of ethanol-water mixture so that the usual opposite trend between membrane selectivity and permeation can be reduced. The nanocomposite membranes are fabricated from an aqueous solution of poly (vinyl alcohol) with silver nanoparticles via the in-situ generation technique in the absence of any reducing agent. Successful generation of the nano size silver is measured by the UV-vis spectrum showing a single peak at 419 nm due to the plasmonic effect of silver nanoparticles. Our nanocomposite AgNPs-PVA membranes are characterized using scanning electron microscope (SEM), Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction and thermogravimetric analysis (TGA). The pervaporation tests of our new AgNPs-PVA membranes show good results since at a higher temperature and higher ethanol concentration in the feed, the prepared membranes are highly permeable for the water having stable selectivity values and therefore our membranes show better performance compared to that of the other PVA-based nanocomposite membranes.
Asmaa Selim, Andras Jozsef Toth, Daniel Fozer, Eniko Haaz, Nóra Valentínyi, Tibor Nagy, Orsolya Keri, Lászlo Péter Bakos, Imre Miklós Szilágyi, Peter Mizsey. Effect of silver-nanoparticles generated in poly (vinyl alcohol) membranes on ethanol dehydration via pervaporation[J]. 中国化学工程学报, 2019, 27(7): 1595-1607.
Asmaa Selim, Andras Jozsef Toth, Daniel Fozer, Eniko Haaz, Nóra Valentínyi, Tibor Nagy, Orsolya Keri, Lászlo Péter Bakos, Imre Miklós Szilágyi, Peter Mizsey. Effect of silver-nanoparticles generated in poly (vinyl alcohol) membranes on ethanol dehydration via pervaporation[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1595-1607.
[1] J.E. Cadotte, Reverse osmosis membrane. US patent 4039440(1977). [2] L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination:Water sources, technology, and today's challenges, Water Res. 43(2009) 2317-2348. [3] T.S. Chung, S. Zhang, K.Y. Wang, J.C. Su, M.M. Ling, Forward osmosis processes:Yesterday, today and tomorrow, Desalination 287(2012) 78-81. [4] D. Li, H. Wang, Recent developments in reverse osmosis desalination membranes, J. Mater. Chem. 20(2010) 4551-4566. [5] M.T.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies, Energy Environ. Sci. 4(2011) 1946-1971. [6] B. Van der Bruggen, C. Vandecasteele, T.V. Gestel, W. Doyen, R. Leysen, A review of pressure-driven membrane processes in wastewater treatment and drinking water production, Environ. Prog. Sustain. Energy 22(2003) 46-56. [7] M. Elimelech, W.A. Phillip, The future of seawater desalination:Energy, technology and the environment, Science 333(2011) 712-717. [8] Y.N. Kwon, S. Hong, H. Choi, T. Tak, Surface modification of a polyamide reverse osmosis membrane for chlorine resistance improvement, J. Membr. Sci. 415-416(2012) 192-198. [9] S. Xiong, J. Zuo, Y.G. Ma, L. Liu, H. Wu, Y. Wang, Novel thin film composite forward osmosis membrane of enhanced water flux and anti-fouling property with N-[3-(trimethoxysilyl) propyl] ethylenediamine incorporated, J. Membr. Sci. 520(2016) 400-414. [10] K.Y. Jee, D.H. Shin, Y.T. Lee, Surface modification of polyamide RO membrane for improved fouling resistance, Desalination 394(2016) 131-137. [11] D. Saeki, T. Tanimoto, H. Matsuyama, Anti-biofouling of polyamide reverse osmosis membranes using phosphorylcholine polymer grafted by surfaceinitiated atom transfer radical polymerization, Desalination 350(2014) 21-27. [12] C.K. Kim, J.H. Kim, I.J. Roh, J.J. Kim, The changes of membrane performance with polyamide molecular structure in the reverse osmosis process, J. Membr. Sci. 165(2000) 189-199. [13] Y. Song, P. Sun, L.L. Henry, B. Sun, Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process, J. Membr. Sci. 251(2005) 67-79. [14] Y.H. La, R. Sooriyakumaran, D.C. Miller, M. Fujiwara, Y. Terui, K. Yamanaka, B. D. McCloskey, B.D. Freeman, R.D. Allen, Novel thin film composite membrane containing ionizable hydrophobes:pH-dependent reverse osmosis behavior and improved chlorine resistance, J. Mater. Chem. 20(2010) 4615-4620. [15] X. Li, T.S. Chung, Effects of free volume in thin-film composite membranes on osmotic power generation, AIChE J. 59(2013) 4749-4761. [16] S. Zhang, F.J. Fu, T.S. Chung, Substrate modifications and alcohol treatment on thin film composite membranes for osmotic power, Chem. Eng. Sci. 87(2013) 40-50. [17] P. Gorgojo, M.F. Jimenez-Solomon, A.G. Livingston, Polyamide thin film composite membranes on cross-linked polyimide supports:Improvement of RO performance via activating solvent, Desalination 344(2014) 181-188. [18] I. Kocsis, Z. Sun, Y.M. Legrand, M. Barboiu, Artificial water channels-Deconvolution of natural aquaporins through synthetic design, npj Clean Water 1(2018) 13. [19] S. Qi, R. Wang, G.K.M. Chaitra, J. Torres, X. Hu, A.G. Fane, Aquaporin-based biomimetic reverse osmosis membranes:Stability and long term performance, J. Membr. Sci. 508(2016) 94-103. [20] B.H. Jeong, E.M.V. Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A.K. Ghosh, A. Jawor, Interfacial polymerization of thin film nanocomposites:A new concept for reverse osmosis membranes, J. Membr. Sci. 294(2007) 1-7. [21] M.L. Lind, A.K. Ghosh, A. Jawor, X. Huang, W. Hou, Y. Yang, E.M.V. Hoek, Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes, Langmuir 25(2009) 10139-10145. [22] M. Safarpour, V. Vatanpour, A. Khataee, H. Zarrabi, P. Gholami, M.E. Yekavalangi, High flux and fouling resistant reverse osmosis membrane modified with plasma treated natural zeolite, Desalination 411(2017) 89-100. [23] H. Dong, L. Zhao, L. Zhang, H. Chen, C. Gao, W.S.W. Ho, High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination, J. Membr. Sci. 476(2015) 373-383. [24] H. Huang, X. Qu, H. Dong, L. Zhang, H. Chen, Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane, RSC Adv. 3(2013) 8203-8207. [25] J. Farahbakhsh, M. Delnavaz, V. Vatanpour, Investigation of raw and oxidized multiwalled carbon nanotubes in fabrication of reverse osmosis polyamide membranes for improvement in desalination and antifouling properties, Desalination 410(2017) 1-9. [26] E.K. Sinner, W. Knoll, Functional tethered membranes, Curr. Opin. Chem. Biol. 5(2001) 705-711. [27] E. Kalb, S. Frey, L.K. Tamm, Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers, Biochim. Biophys. Acta 1103(1992) 307-316. [28] G. Sun, H. Zhou, Y. Li, K. Jeyaseelan, A. Armugam, T.S. Chung, A novel method of AquaporinZ incorporation via binary-lipid Langmuir monolayers, Colloids Surf. B:Biointerfaces 89(2012) 283-288. [29] A. Fuwad, H. Ryu, N. Malmstadt, S.M. Kim, T.-J. Jeon, Biomimetic membranes as potential tools for water purification:Preceding and future avenues, Desalination 458(2019) 97-115. [30] J. Duan, Y. Pan, F. Pacheco, E. Litwiller, Z. Lai, I. Pinnau, High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8, J. Membr. Sci. 476(2015) 303-310. [31] C. Wang, X. Liu, N.K. Demir, J.P. Chen, K. Li, Applications of water stable metalorganic frameworks, Chem. Soc. Rev. 45(2016) 5107-5134. [32] D.C. Ma, S.B. Peh, G. Han, S.B. Chen, Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66:Toward enhancement of water flux and salt rejection, ACS Appl. Mater. Interfaces 9(2017) 7523-7534. [33] Y. He, Y.P. Tang, D.C. Ma, T.S. Chung, UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal, J. Membr. Sci. 541(2017) 262-270. [34] G.L. Jadav, P.S. Singh, Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties, J. Membr. Sci. 328(2009) 257-267. [35] H.S. Lee, S.J. Im, J.H. Kim, J.P. Kim, B.R. Min, Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles, Desalination 219(2008) 48-56. [36] S.Y. Lee, H.J. Kim, R. Patel, S.J. Im, J.H. Kim, B.R. Min, Silver nanoparticles immobilized on thin film composite polyamide membrane:Characterization, nanofiltration, antifouling properties, Polym. Adv. Technol. 18(2007) 562-568. [37] M.E.A. Ali, L. Wang, X. Wang, X. Feng, Thin film composite membranes embedded with graphene oxide for water desalination, Desalination 386(2016) 67-76. [38] M. Safarpour, A. Khataee, V. Vatanpour, Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance, J. Membr. Sci. 489(2015) 43-54. [39] R.F. Service, To net big molecules, widen the mesh, Science 296(2002) 449-451. [40] D.X. Trinh, T.P.N. Tran, T. Taniike, Fabrication of new composite membrane filled with UiO-66 nanoparticles and its application to nanofiltration, Sep. Purif. Technol. 177(2017) 249-256. [41] Y. Li, S. Li, K. Zhang, Influence of hydrophilic carbon dots on polyamide thin film nanocomposite reverse osmosis membranes, J. Membr. Sci. 537(2017) 42-53. [42] S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications, Chem. Soc. Rev. 44(2015) 362-381. [43] S. Xu, F. Li, B. Su, A.Z. Hu, X. Gao, C. Gao, Novel graphene quantum dots (GQDs)-incorporated thin film composite (TFC) membranes for forward osmosis (FO) desalination, Desalination 451(2019) 219-230. [44] D.L. Zhao, S. Das, T.S. Chung, Carbon quantum dots grafted antifouling membranes for osmotic power generation via pressure-retarded osmosis process, Environ. Sci. Technol. 51(2017) 14016-14023. [45] X. Song, Q. Zhou, T. Zhang, H. Xu, Z. Wang, Pressure-assisted preparation of graphene oxide quantum dot-incorporated reverse osmosis membranes:Antifouling and chlorine resistance potentials, J. Mater. Chem. A 4(2016) 16896-16905. [46] W.X. Gai, D.L. Zhao, T.S. Chung, Novel thin film composite hollow fiber membranes incorporated with carbon quantum dots for osmotic power generation, J. Membr. Sci. 551(2018) 94-102. [47] X.H. Ma, Z.K. Yao, Z. Yang, H. Guo, Z.L. Xu, C.Y. Tang, M. Elimelech, Nanofoaming of polyamide desalination membranes to tune permeability and selectivity, Environ. Sci. Technol. Lett. 5(2018) 123-130. [48] T.S. Chung, L. Luo, C.F. Wan, Y. Cui, G. Amy, What is next for forward osmosis (FO) and pressure retarded osmosis (PRO), Sep. Purif. Technol. 156(2015) 856-860. [49] S. Lee, J. Choi, Y.-G. Park, H. Shon, C.G. Ahn, S.-H. Kim, Hybrid desalination processes for beneficial use of reverse osmosis brine:Current status and future prospects, Desalination 454(2019) 104-111. [50] T. Y. Cath, A. E. Childress, Systems and methods for purification of liquids, US Patent 7914680 B2. (2011). [51] N.T. Hancock, P. Xu, M.J. Roby, J.D. Gomez, T.Y. Cath, Towards direct potable reuse with forward osmosis:Technical assessment of long-term process performance at the pilot scale, J. Membr. Sci. 445(2013) 34-46. [52] T.S. Chung, X. Li, R.C. Ong, Q. Ge, H. Wong, G. Han, Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications, Curr. Opin. Chem. Eng. 1(2012) 246-257. [53] Y. Liu, B. Mi, Combined fouling of forward osmosis membranes:Synergistic foulant interaction and direct observation of fouling layer formation, J. Membr. Sci. 407-408(2012) 136-144. [54] N.N. Bui, J.R. McCutcheon, Nanofiber supported thin-film composite membrane for pressure-retarded osmosis, Environ. Sci. Technol. 48(2014) 4129-4136. [55] Y. Chun, F. Zaviska, E. Cornelissen, L. Zou, A case study of fouling development and flux reversibility of treating actual lake water by forward osmosis process, Desalination 357(2015) 55-64. [56] F. Volpin, E. Fons, L. Chekli, J.E. Kim, A. Jang, H.K. Shon, Hybrid forward osmosis-reverse osmosis for wastewater reuse and seawater desalination:Understanding the optimal feed solution to minimise fouling, Process. Saf. Environ. Prot. 117(2018) 523-532. [57] A.H. Hawari, A. Al-Qahoumi, A. Ltaief, S. Zaidi, A. Altaee, Dilution of seawater using dewatered construction water in a hybrid forward osmosis system, J. Clean. Prod. 195(2018) 365-373. [58] C.F. Wan, T.S. Chung, Techno-economic evaluation of various RO+PRO and RO + FO integrated processes, Appl. Energy 212(2018) 1038-1050. [59] R. Valladares Linares, Z. Li, V. Yangali-Quintanilla, N. Ghaffour, G. Amy, T. Leiknes, J.S. Vrouwenvelder, Life cycle cost of a hybrid forward osmosis-Low pressure reverse osmosis system for seawater desalination and wastewater recovery, Water Res. 88(2016) 225-234. [60] S. Loeb, Production of energy from concentrated brines by pressure-retarded osmosis:I. Preliminary technical and economic correlations, J. Membr. Sci. 1(1976) 49-63. [61] S. Loeb, F.V. Hessen, D. Shahaf, Production of energy from concentrated brines by pressure-retarded osmosis:Ⅱ. Experimental results and projected energy costs, J. Membr. Sci. 1(1976) 249-269. [62] K. Gerstandt, K.V. Peinemann, S.E. Skilhagen, T. Thorsen, T. Holt, Membrane processes in energy supply for an osmotic power plant, Desalination 224(2008) 64-70. [63] G. Han, S. Zhang, X. Li, T.S. Chung, Progress in pressure retarded osmosis (PRO) membranes for osmotic power generation, Prog. Polym. Sci. 51(2015) 1-27. [64] W.R. Thelin, E. Sivertsen, T. Holt, G. Brekke, Natural organic matter fouling in pressure retarded osmosis, J. Membr. Sci. 438(2013) 46-56. [65] S. Zhang, T.S. Chung, Minimizing the instant and accumulative effects of salt permeability to sustain ultrahigh osmotic power density, Environ. Sci. Technol. 47(2013) 10085-10092. [66] C.F. Wan, T.S. Yang, W.X. Gai, Y.D. Lee, T.S. Chung, Thin-film composite hollow fiber membrane with inorganic salt additives for high mechanical strength and high power density for pressure-retarded osmosis, J. Membr. Sci. 555(2018) 388-397. [67] M.H. Sharqawy, S.M. Zubair, J.H. Lienhard V, Second law analysis of reverse osmosis desalination plants:An alternative design using pressure retarded osmosis, Energy 36(2011) 6617-6626. [68] C.F. Wan, T.S. Chung, Energy recovery by pressure retarded osmosis (PRO) in SWRO-PRO integrated processes, Appl. Energy 162(2016) 687-698. [69] C.F. Wan, S. Jin, T.S. Chung, Mitigation of inorganic fouling on pressure retarded osmosis (PRO) membranes by coagulation pretreatment of the wastewater concentrate feed, J. Membr. Sci. 572(2019) 658-667. [70] S.C. Chen, G.L. Amy, T.S. Chung, Membrane fouling and anti-fouling strategies using RO retentate from a municipal water recycling plant as the feed for osmotic power generation, Water Res. 88(2016) 144-155. [71] Q. She, R. Wang, A.G. Fane, C.Y. Tang, Membrane fouling in osmotically driven membrane processes:A review, J. Membr. Sci. 499(2016) 201-233. [72] C.F. Wan, T.S. Chung, Osmotic power generation by pressure retarded osmosis using seawater brine as the draw solution and wastewater retentate as the feed, J. Membr. Sci. 479(2015) 148-158. [73] G. Han, J.L. Zhou, C.F. Wan, T.S. Yang, T.S. Chung, Investigations of inorganic and organic fouling behaviors, antifouling and cleaning strategies for pressure retarded osmosis (PRO) membrane using seawater desalination brine and wastewater, Water Res. 103(2016) 264-275. [74] X. Li, T. Cai, G.L. Amy, T.S. Chung, Cleaning strategies and membrane flux recovery on anti-fouling membranes for pressure retarded osmosis, J. Membr. Sci. 522(2017) 116-123. [75] S. Zhang, Y. Zhang, T.S. Chung, Facile preparation of antifouling hollow fiber membranes for sustainable osmotic power generation, ACS Sustain. Chem. Eng. 4(2016) 1154-1160. [76] Y. Zhang, J.L. Li, T. Cai, Z.L. Cheng, X. Li, T.S. Chung, Sulfonated hyperbranched polyglycerol grafted membranes with antifouling properties for sustainable osmotic power generation using municipal wastewater, J. Membr. Sci. 563(2018) 521-530. [77] N.L. Le, M. Quilitzsch, H. Cheng, P.-Y. Hong, M. Ulbricht, S.P. Nunes, T.S. Chung, Hollow fiber membrane lumen modified by polyzwitterionic grafting, J. Membr. Sci. 522(2017) 1-11. [78] T. Thorsen, T. Holt, The potential for power production from salinity gradients by pressure retarded osmosis, J. Membr. Sci. 335(2009) 103-110. [79] E.S.H. Lee, J.Y. Xiong, G. Han, C.F. Wan, Q.Y. Chong, T.S. Chung, A pilot study on pressure retarded osmosis operation and effective cleaning strategies, Desalination 420(2017) 273-282. [80] K. Saito, M. Irie, S. Zaitsu, H. Sakai, H. Hayashi, A. Tanioka, Power generation with salinity gradient by pressure retarded osmosis using concentrated brine from SWRO system and treated sewage as pure water, Desalin. Water Treat. 41(2012) 114-121. [81] G. Han, C.F. Wan, T.S. Chung, in:S. Sarp, N. Hilal (Eds.), Membrane-based salinity gradient processes for water treatment and power generation, Elsevier, 2018, pp. 175-200, Ch. 3. [82] G. Han, J. Zuo, C.F. Wan, T.S. Chung, Hybrid pressure retarded osmosis-membrane distillation (PRO-MD) process for osmotic power and clean water generation, Environ. Sci.:Water Res. Technol. 1(2016) 507-515. [83] J. Kim, M. Park, H.K. Shon, J.H. Kim, Performance analysis of reverse osmosis, membrane distillation, and pressure-retarded osmosis hybrid processes, Desalination 380(2016) 85-92. [84] S.H. Chae, J. Seo, J. Kim, Y.M. Kim, J.H. Kim, A simulation study with a new performance index for pressure-retarded osmosis processes hybridized with seawater reverse osmosis and membrane distillation, Desalination 444(2018) 118-128. [85] Z.L. Cheng, X. Li, T.S. Chung, The forward osmosis-pressure retarded osmosis (FO-PRO) hybrid system:A new process to mitigate membrane fouling for sustainable osmotic power generation, J. Membr. Sci. 559(2018) 63-74. [86] M. Gryta, Concentration of NaCl solution by membrane distillation integrated with crystallization, Sep. Sci. Technol. 37(2002) 3535-3558. [87] M.T. Chan, A.G. Fane, J.T. Matheickal, R. Sheikholeslami, Membrane distillation crystallization of concentrated salts-Flux and crystal formation, J. Membr. Sci. 257(2005) 144-155. [88] F. Edwie, T.S. Chung, Development of simultaneous membrane distillationcrystallization (SMDC) technology for treatment of saturated brine, Chem. Eng. Sci. 98(2013) 160-172. [89] C.A. Quist-Jensen, F. Macedonio, E. Drioli, Membrane crystallization for salts recovery from brine-An experimental and theoretical analysis, Desalin. Water Treat. 57(2016) 7593-7603. [90] K.K. Sirkar, Separation of Molecules, macromolecules and particles:Principles, phenomena and processes, Cambridge University Press, 2014, https://doi.org/10.1017/CBO9781107415324.004. [91] P. Wang, T.S. Chung, A conceptual demonstration of freeze desalinationmembrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy, Water Res. 46(2012) 4037-4052. [92] D.M. Zarkadas, K.K. Sirkar, Solid hollow fiber cooling crystallization, Ind. Eng. Chem. Res. 43(2004) 7163-7180. [93] H. Julian, S. Meng, H. Li, Y. Ye, V. Chen, Effect of operation parameters on the mass transfer and fouling in submerged vacuum membrane distillation crystallization (VMDC) for inland brine water treatment, J. Membr. Sci. 520(2016) 679-692. [94] L. Luo, J. Zhao, T.S. Chung, Integration of membrane distillation (MD) and solid hollow fiber cooling crystallization (SHFCC) systems for simultaneous production of water and salt crystals, J. Membr. Sci. 564(2018) 905-915. [95] D.E. Suk, T. Matsuura, Membrane-based hybrid processes:A review, Sep. Sci. Technol. 41(2006) 595-626. [96] J. Chang, J. Zuo, K.J. Lu, T.S. Chung, Membrane development and energy analysis of freeze desalination-vacuum membrane distillation hybrid systems powered by LNG regasification and solar energy, Desalination 449(2018) 16-25. [97] R.K. McGovern, J.H. Lienhard V, On the potential of forward osmosis to energetically outperform reverse osmosis desalination, J. Membr. Sci. 469(2014) 245-250. [98] S. Zhang, P. Wang, X. Fu, T.S. Chung, Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD), Water Res. 52(2014) 112-121. [99] D.L. Zhao, P. Wang, Q. Zhao, N. Chen, X. Lu, Thermoresponsive copolymerbased draw solution for seawater desalination in a combined process of forward osmosis and membrane distillation, Desalination 348(2014) 26-32. [100] Q. Ge, C.H. Lau, M. Liu, A novel multi-charged draw solute that removes organic arsenicals from water in a hybrid membrane process, Environ. Sci. Technol. 52(2018) 3812-3819. [101] C.R. Martinetti, A.E. Childress, T.Y. Cath, High recovery of concentrated RO brines using forward osmosis and membrane distillation, J. Membr. Sci. 331(2009) 31-39. [102] M. Cappelle, W.S. Walker, T.A. Davis, Improving desalination recovery using zero discharge desalination (ZDD):A process model for evaluating technical feasibility, Ind. Eng. Chem. Res. 56(2017) 10448-10460. [103] T. Tong, M. Elimelech, The global rise of zero liquid discharge for wastewater management:Drivers, technologies, and future directions, Environ. Sci. Technol. 50(2016) 6846-6855. [104] K.J. Lu, Z.L. Cheng, J. Chang, L. Luo, T.S. Chung, Design of zero liquid discharge desalination (ZLDD) systems consisting of freeze desalination, membrane distillation, and crystallization powered by green energies, Desalination 458(2019) 66-75. [105] J. Chang, J. Zuo, K.J. Lu, T.S. Chung, Freeze desalination of seawater using LNG cold energy, Water Res. 102(2016) (2016) 282-293. [106] C.E. Pantoja, Y.N. Nariyoshi, M.M. Seckler, Membrane distillation crystallization applied to brine desalination:A hierarchical design procedure, Ind. Eng. Chem. Res. 54(2015) 2776-2793. [107] M. Rezaei, D.M. Warsinger, J.H. Lienhard V, M.C. Duke, T. Matsuura, W.M. Samhaber, Wetting phenomena in membrane distillation:Mechanisms, reversal, and prevention, Water Res. 139(2018) 329-352. [108] P. Wang, T.S. Chung, Recent advances in membrane distillation processes:Membrane development, configuration design and application exploring, J. Membr. Sci. 474(2015) 39-56. [109] M. Khayet, T. Matsuura, Membrane distillation:Principles and applications, Elsevier B.V., 2011, https://doi.org/10.1016/B978-0-444-53126-1.10001-6. [110] N. Thomas, M.O. Mavukkandy, S. Loutatidou, H.A. Arafat, Membrane distillation research & implementation:Lessons from the past five decades, Sep. Purif. Technol. 189(2017) 108-127. [111] D.L. Shaffer, L.H. Arias Chavez, M. Ben-Sasson, S. Romero-Vargas Castrillón, N. Y. Yip, M. Elimelech, Desalination and reuse of high-salinity shale gas produced water:Drivers, technologies, and future directions, Environ. Sci. Technol. 47(2013) 9569-9583. [112] C. Boo, J. Lee, M. Elimelech, Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation, Environ. Sci. Technol. 50(2016) 12275-12282. [113] S. Lin, S. Nejati, C. Boo, Y. Hu, C.O. Osuji, M. Elimelech, Omniphobic membrane for robust membrane distillation, Environ. Sci. Technol. Lett. 1(2014) 443-447. [114] K.J. Lu, J. Zuo, J. Chang, H.N. Kuan, T.S. Chung, Omniphobic hollow-fiber membranes for vacuum membrane distillation, Environ. Sci. Technol. 52(2018) 4472-4480. [115] Y.C. Woo, Y. Chen, L.D. Tijing, S. Phuntsho, T. He, J.S. Choi, S.H. Kim, H.K. Shon, CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation, J. Membr. Sci. 529(2017) 234-242. [116] J. Lee, C. Boo, W.H. Ryu, A.D. Taylor, M. Elimelech, Development of omniphobic desalination membranes using a charged electrospun nanofiber scaffold, ACS Appl. Mater. Interfaces 8(2016) 11154-11161. [117] R. Zheng, Y. Chen, J. Wang, J. Song, X.M. Li, T. He, Preparation of omniphobic PVDF membrane with hierarchical structure for treating saline oily wastewater using direct contact membrane distillation, J. Membr. Sci. 555(2018) 197-205. [118] Y.C. Woo, Y. Kim, M. Yao, L.D. Tijing, J.S. Choi, S. Lee, S.H. Kim, H.K. Shon, Hierarchical composite membranes with robust omniphobic surface using layer-by-layer assembly technique, Environ. Sci. Technol. 52(2018) 2186-2196. [119] L. Deng, H. Ye, X. Li, P. Li, J. Zhang, X. Wang, M. Zhu, B.S. Hsiao, Self-roughened omniphobic coatings on nanofibrous membrane for membrane distillation, Sep. Purif. Technol. 206(2018) 14-25. [120] C. Lu, C. Su, H. Cao, X. Ma, F. Duan, J. Chang, Y. Li, F-POSS based omniphobic membrane for robust membrane distillation, Mater. Lett. 228(2018) 85-88. [121] J. Chang, J. Zuo, L. Zhang, G.S. O'Brien, T.S. Chung, Using green solvent, triethyl phosphate (TEP) to fabricate highly porous PVDF hollow fiber membranes for membrane distillation, J. Membr. Sci. 539(2017) 295-304. [122] B. Li, K.K. Sirkar, Novel membrane and device for vacuum membrane distillation-based desalination process, J. Membr. Sci. 257(2005) 60-75. [123] P. Wang, T.S. Chung, A new-generation asymmetric multi-bore hollow fiber membrane for sustainable water production via vacuum membrane distillation, Environ. Sci. Technol. 47(2013) 6272-6278. [124] L. Francis, N. Ghaffour, A.A. Alsaadi, G.L. Amy, Material gap membrane distillation:A new design for water vapor flux enhancement, J. Membr. Sci. 448(2013) 240-247. [125] A.S. Alsaadi, N. Ghaffour, J.D. Li, S. Gray, L. Francis, H. Maab, G.L. Amy, Modeling of air-gap membrane distillation process:A theoretical and experimental study, J. Membr. Sci. 445(2013) 53-65. [126] L.M. Camacho, L. Dumée, J. Zhang, J. Li, M. Duke, J. Gomez, S. Gray, Advances in membrane distillation for water desalination and purification applications, Water 5(2013) 94-196. [127] A.C. Sun, W. Kosar, Y. Zhang, X. Feng, Vacuum membrane distillation for desalination of water using hollow fiber membranes, J. Membr. Sci. 455(2014) 131-142. [128] M.A.E.R. Abu-Zeid, Y. Zhang, H. Dong, L. Zhang, H.L. Chen, L. Hou, A comprehensive review of vacuum membrane distillation technique, Desalination 356(2015) 1-14. [129] J. Zuo, T.S. Chung, PVDF hollow fibers with novel sandwich structure and superior wetting resistance for vacuum membrane distillation, Desalination 417(2017) 94-101. [130] X. Huang, Y.H. Yu, O.L. de Llergo, S.M. Marquez, Z. Cheng, Facile polypyrrole thin film coating on polypropylene membrane for efficient solar-driven interfacial water evaporation, RSC Adv. 7(2017) 9495-9499. [131] G. Liu, J. Xu, K. Wang, Solar water evaporation by black photothermal sheets, Nano Energy 41(2017) 269-284. [132] L. Zhang, B. Tang, J. Wu, R. Li, P. Wang, Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating, Adv. Mater. 27(2015) 4889-4894. [133] A. Politano, P. Argurio, G. Di Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H.A. Arafat, E. Curcio, Photothermal membrane distillation for seawater desalination, Adv. Mater. (2016) 1-6. [134] A.V. Dudchenko, C. Chen, A. Cardenas, J. Rolf, D. Jassby, Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes, Nat. Nanotechnol. 12(2017) 557-563. [135] Z.V.P. Murthy, L.B. Chaudhari, Rejection behavior of nickel ions from synthetic wastewater containing Na2SO4, NiSO4, MgCl2 and CaCl2 salts by nanofiltration and characterization of the membrane, Desalination 247(2009) 610-622. [136] K.Y. Wang, T.S. Chung, Polybenzimidazole nanofiltration hollow fiber for cephalexin separation, AIChE J. 52(2006) 1363-1377. [137] D.L. Oatley-Radcliffe, M. Walters, T.J. Ainscough, P.M. Williams, A.W. Mohammad, N. Hilal, Nanofiltration membranes and processes:A review of research trends over the past decade, J. Water Process Eng. 19(2017) 164-171. [138] J. Gao, Z.W. Thong, K.Y. Wang, T.S. Chung, Fabrication of loose inner-selective polyethersulfone (PES) hollow fibers by one-step spinning process for nanofiltration (NF) of textile dyes, J. Membr. Sci. 541(2017) 413-424. [139] L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang, Y. Wang, F. Bian, J. Wang, D. Li, Z. Qian, G. Xu, G. Liu, J. Zeng, L. Zhang, Y. Yang, G. Zhou, M. Wu, W. Jin, J. Li, H. Fang, Ion sieving in graphene oxide membranes via cationic control of interlayer spacing, Nature 550(2017) 380-383. [140] G. Liu, W. Jin, N. Xu, Two-dimensional-material membranes:A new family of high-performance separation membranes, Angew. Chem. Int. Ed. 55(2016) 13384-13397. [141] Y. Zhang, T.S. Chung, Graphene oxide membranes for nanofiltration, Curr. Opin. Chem. Eng. 16(2017) 9-15. [142] Y. Jiang, P. Biswas, J.D. Fortner, A review of recent developments in grapheneenabled membranes for water treatment, Environ. Sci.:Water Res. Technol. 2(2016) 915-922. [143] H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Maximizing the right stuff:The trade-off between membrane permeability and selectivity, Science 356(2017) 1137. [144] M. Hu, B. Mi, Enabling graphene oxide nanosheets as water separation membranes, Environ. Sci. Technol. 47(2013) 3715-3723. [145] Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification, Adv. Funct. Mater. 23(2013) 3693-3700. [146] Y. Zhang, S. Zhang, J. Gao, T.S. Chung, Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal, J. Membr. Sci. 515(2016) 230-237. [147] Y. Zhang, S. Japip, T.S. Chung, Thermally evolved and boron bridged graphene oxide (GO) frameworks constructed on microporous hollow fiber substrates for water and organic matters separation, Carbon 123(2017) 193-204. [148] Y. Lou, G. Liu, S. Liu, J. Shen, W. Jin, A facile way to prepare ceramic-supported graphene oxide composite membrane via silane-graft modification, Appl. Surf. Sci. 307(2014) 631-637. [149] W.S. Hung, C.H. Tsou, M.D. Guzman, Q.F. An, Y.L. Liu, Y.M. Zhang, C.C. Hu, K.R. Lee, J.Y. Lai, Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing, Chem. Mater. 26(2014) 2983-2990. [150] D. Hua, R.K. Rai, Y. Zhang, T.S. Chung, Aldehyde functionalized graphene oxide frameworks as robust membrane materials for pervaporative alcohol dehydration, Chem. Eng. Sci. 161(2017) 341-349. [151] R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes, Science 343(2014) 752-754. [152] G. Liu, W. Jin, Graphene oxide membrane for molecular separation:Challenges and opportunities, Sci. China Mater. 61(2018) 1021-1026. [153] Y.R. He, D.L. Zhao, T.S. Chung, Na+ functionalized carbon quantum dot incorporated thin-film nanocomposite membranes for selenium and arsenic removal, J. Membr. Sci. 564(2018) 483-491. [154] C. Zhang, K. Wei, W. Zhang, Y. Bai, Y. Sun, J. Gu, Graphene oxide quantum dots incorporated into a thin film nanocomposite membrane with high flux and antifouling properties for low-pressure nanofiltration, ACS Appl. Mater. Interfaces 9(2017) 11082-11094. [155] D.L. Zhao, T.S. Chung, Applications of carbon quantum dots (CQDs) in membrane technologies:A review, Water Res. 147(2018) 43-49. [156] X. Yang, L. Yan, F. Ran, A. Pal, J. Long, L. Shao, Interface-confined surface engineering constructing water-unidirectional Janus membrane, J. Membr. Sci. 576(2019) 9-16. [157] H. Sun, X. Yang, Y. Zhang, X. Cheng, Y. Xu, Y. Bai, L. Shao, Segregation-induced in situ hydrophilic modification of poly (vinylidene fluoride) ultrafiltration membranes via sticky poly (ethylene glycol) blending, J. Membr. Sci. 563(2018) 22-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||