[1] M. Rukosuyev, A. Esmaeilirad, S. Baqar, M. Jun, Uniform silver nanoparticles coating using dual regime spray deposition system for superhydrophilic and antifogging applications, J. Coat. Technol. Res.14 (2016)1-8 [2] D. Nanda, P. Varshney, M. Satapathy, S.S. Mohapatra, B. Bhushan, A. Kumar, Single step method to fabricate durable superliquiphobic coating on aluminum surface with self-cleaning and anti-fogging properties, J. Colloid Interf. Sci. 507 (2017) 397-409 [3] X. Du, Y. Xing, M. Zhou, X. Y. Li, H. W. Huang, X. M. Meng, Y. Q. Wen, X. J. Zhang, Broadband antireflective superhydrophilic antifogging nano-coatings based on three-layer system, Microporous Mesoporous Mater. 255 (2017) 84-93 [4] Y. Zhang, Y. Qi, Z. Zhang, G. Sun, Synthesis of fluorinated acrylate polymer and preparation and properties of antifouling coating, J. Coat. Technol. Res.12 (2015) 215-223 [5] X. M. Cui, R. M. Ding, M. C. Wang, C. H. Wang, J. Zhang, J. Wang, W. S. Dong, Y Xu, A hydrophobic and abrasion-resistant MgF2 coating with an ultralow refractive index for double-layer broadband antireflective coatings, J. Mater. Chem. C 5 (2017) 3088-3096 [6] T. Otitoju, A.Ahmad, B. Ooi, Superhydrophilic (superwetting) surfaces:A review on fabrication and application, J.Ind. Eng. Chem. 47 (2017) 19-40 [7] X. He, L. Zhao, J. Cheng, Coalescence-induced swift jumping of nanodroplets on curved surfaces, Langmiur 35 (2019) 9979-9987 [8] A. Nakajima, K. Hashimoto, T. Watanabe, Transparent superhydrophobic thin films with self-cleaning properties, Langmiur 16 (2000) 7044-7047 [9] R. Mukhopadhyay, B. Vedhanarayanan, A. Ajayaghosh, Mimicking the ‘Rose Petal’ and ‘Lotus Leaf’ effects on alumina by surface functionalization and metal ion coordination, Angew. Chem. Int. Ed. 129 (2017) 16018-16022 [10] L. M. Qin, N. Chen, X. Zhou, Q. M. Pan, A superhydrophobic aerogel with robust self-healability, J. Mater. Chem. A 6 (2018) 4424-4431 [11] K. Arturi, H. Jepsen, J. Callsen, E. Søgaard, M. Simonsen, Superhydrophilicity and durability of fluoropolymer-TiO2 coatings, Prog. Org. Coat. 90 (2016) 132-138 [12] L. Zhang, N. Zhao, J. Xu, Fabrication and application of superhydrophilic surfaces:A review, J. Adhes. Sci. Technol. 28(2012) 1-22 [13] G. Mahmodi, S. Dangwal, P. Zarrintaj, M. F. Zhu, Y. Mao, D. N. Mcllroy, M. Reza-Saeb, V. Vatanpour, J. D. Ramsey, S. J. Kim,NaA zeolite-coated meshes with tunable hydrophilicity for oil-water separation, Sep. Purif. Technol. 240 (2020) 116630-116637 [14] F. Jeremias, D. Fröhlich, C. Janiak, S. K. Henninger, Water and methanol adsorption on MOFs for cycling heat transformation processes, New J. Chem. 38 (2014) 1846-1852 [15] A. J. Bons, P. D.Bons, The development of oblique preferred orientations in zeolite films and membranes, Microporous Mesoporous Mater. 62 (2003) 9-16 [16] K. Schnabel, G. Finger, J. Kornatowski, E. Löffler, C. Peuker, W. Pilz, Decomposition of template in SAPO-5 and AlPO4-5 molecular sieves studied by IR and Raman spectroscopy, Microporous Mater. 11 (1997) 293-302 [17] T.Dang, H. Zubowa, U. Bentrup, M. Richter, A. Martin, Microwave-assisted synthesis and characterization of Cu-containing AlPO4-5 and SAPO-5, Microporous Mesoporous Mater. 123 (2009) 209-220 [18] H.Sun, Z. Tang, J. Chen, G. Li, Synthesis and Raman characterization of mono-sized single-wall carbon nanotubes in one-dimensional channels of AlPO4-5 crystals, Appl. Phys. Mater. Sci. Process. 69 (1999) 381-384 [19] S. Suib, A. Winiecki, A. Kostapapas, Surface chemical states of aluminophosphate and silicoaluminophosphate molecular sieves, Langmuir 3 (1987) 483-488 [20] G.Karanikolos, H. Garcia, A. Corma,M. Tsapatsis, Growth of AlPO4-5 and CoAPO-5 films from amorphous seeds, Micropor. Mesopor. Mater. 115(2008) 11-22 [21] Y. Wan, C. D. Williams, C. V. A. Duke, J. J. Cox, Systematic studies on the effect of water content on the synthesis, crystallisation, conversion and morphology of AlPO4-5 molecular sieve, J. Mater. Chem. 10 (2000) 2857-2862 [22] G. N. Karanikolos, J. W. Wydra, J. A. Stoeger, H. García, A. Corma, M. Tsapatsis, Continuous c-oriented AlPO4-5 films by tertiary growth, Chem. Mater. 19 (2007) 792-797 [23] H. Zhang, Q. Xiao, X. Guo, N. Li, P. Kumar, N. Rangnekar, M. Y. Jeon, S. Al-Thabaiti, K. Narasimharao, S. N. Basahel, Open-pore two-dimensional MFI zeolite nanosheets for the fabrication of hydrocarbon-isomer-Selective membranes on porous polymer supports, Angew. Chem. Int. Ed. 55 (2016) 7184-7187 [24] A.Chiang, K. Chao, Membranes and films of zeolite and zeolite-like materials, J. Phys. Chem. Solids 62 (2001) 1899-1910 [25] H.Dong, P. Ye, M, Zhong, J. Pietrasik, R. Drumright, K. Matyjaszewski, Superhydrophilic surfaces via polymer-SiO2 nanocomposites, Langmuir 26 (2010) 15567-15573 [26] M. Wasim, M. Shafiq, R. U. Khan, A. Sabir, Crosslinked integrally skinned asymmetric composite membranes for dye rejection, Appl. Surf. Sci. 478 (2019) 514-521 [27] W. J. Hsu, P. S. Huang, Y. C. Huang, S. W. Hu, H. K. Tsao, D. Y. Kang, Zeolite-based anti-fogging coating via direct wet deposition, Langmuir 35 (2019) 2538-2546 [28] R. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28 (1936) 988-994 [29] R. Wenzel, Surface roughness and contact angle, J. Phys. Colloid Chem. 53 (1949) 1466-1467 [30] K. Manjesh, M. K. Choudhary, J. D. Rimer, Transient modes of zeolite surface growth from 3D gel-like islands to 2D single layers, Nature Commun. 9 (2018) 2129-2138 |